Type 8694 REV.2
Positioner Top Control Basic

Electropneumatic position controller

Operating Instructions
Table of Contents

1 ABOUT THESE INSTRUCTIONS ..8
1.1 Symbols..8
1.2 Definition of terms..9
1.3 Firmware changes..9
2 INTENDED USE ..10
3 BASIC SAFETY INSTRUCTIONS ...11
4 GENERAL INFORMATION ...12
4.1 Contact address..12
4.2 Warranty ...12
4.3 Trademarks..12
4.4 Information on the internet..12
5 SYSTEM DESCRIPTION ...13
5.1 Intended application area...13
5.2 Function of the positioner and combination with valve types ..13
5.3 Features of the valve types...14
5.4 Structure of the positioner...15
5.4.1 Representation ...15
5.4.2 Features ..16
5.4.3 Function diagram of the positioner with single-acting actuator ..17
5.5 Type 8694 positioner (position controller)..18
5.5.1 Schematic representation of the position control Type 8694 ..18
5.5.2 Functions of the position controller software ..19
5.6 Interfaces of the positioner ..21
6 TECHNICAL DATA ..22
6.1 Conformity...22
6.2 Standards ...22
6.3 Licenses ..22
6.4 Operating conditions ...22
6.5 Mechanical data ... 22
6.6 Pneumatic data .. 23
6.7 Type labels .. 23
 6.7.1 Type label .. 23
 6.7.2 UL additional label ... 23
6.8 Electrical data .. 24
 6.8.1 Electrical data, without fieldbus communication ... 24
 6.8.2 Electrical data, IO-Link ... 25
 6.8.3 Electrical data, büS ... 25
 6.8.4 Electrical data, AS-Interface ... 25
6.9 Factory settings of the positioner ... 26
7 CONTROL AND DISPLAY ELEMENTS .. 27
 7.1 Operating state .. 27
 7.2 Control and display elements of the positioner .. 27
 7.3 Configuration of the buttons .. 29
 7.4 Function of the DIP switches .. 31
 7.5 Display of the LEDs ... 33
 7.5.1 Device status display ... 33
 7.5.2 Status LED, green .. 35
 7.6 Error messages .. 36
 7.6.1 Messages for device status „Out of specification“ .. 36
 7.6.2 Messages: Actuator moves to safety position ... 36
8 INSTALLATION .. 38
 8.1 Safety instructions ... 38
 8.2 Installation of the positioner Type 8694 on process valves of series 2103, 2300 and 2301 38
 8.3 Installing the positioner Type 8694 on process valves belonging to series 26xx and 27xx 41
 8.4 Installation on rotary actuators from third party manufacturers ... 45
 8.5 Rotating the actuator module .. 46
 8.6 Rotating the positioner for process valves belonging to series 26xx and 27xx 47
9 PNEUMATIC INSTALLATION .. 49
 9.1 Safety instructions ... 49
9.2 Connecting the device pneumatically ... 49
9.3 Manual actuation of the actuator via pilot valves .. 50
 9.3.1 Single-acting actuators (control function A and B) 50

10 ELECTRICAL INSTALLATION WITHOUT FIELDBUS .. 52
 10.1 Safety instructions ... 52
 10.2 Electrical installation with circular plug-in connector 52
 10.2.1 Designation of the contacts Type 8694 .. 52
 10.2.2 Connection of the positioner Type 8694 .. 53
 10.3 Electrical installation with cable gland ... 55

11 ELECTRICAL INSTALLATION, IO-LINK .. 58

12 ELECTRICAL INSTALLATION, bÜS .. 59

13 ELEKTRICAL INSTALLATION, AS-INTERFACE .. 60
 13.1 Connecting the device with multi-pole cable and flat cable terminal 60

14 START-UP .. 62
 14.1 Safety instructions ... 62
 14.2 Specifying the standard settings ... 62
 14.2.1 Running the automatic adjustment X.TUNE 62
 14.3 Setting with Bürkert Communicator ... 64
 14.3.1 Connecting IO-Link device with Bürkert Communicator 64
 14.3.2 Connecting büS device with Bürkert Communicator 65

15 IO-LINK .. 66
 15.1 Information, IO-Link ... 66
 15.2 Technical specifications, IO-Link ... 66
 15.2.1 Configuration of the fieldbus .. 66

16 bÜS .. 67
 16.1 Information, büS ... 67
 16.2 Configuration of the fieldbus .. 67

17 AS-INTERFACE ... 68
 17.1 Information, AS-Interface ... 68
17.2 Length of the bus line .. 68
17.3 Technical data for AS-Interface PCBs ... 68
17.4 Programming data ... 68
17.5 LED status display AS-Interface ... 69
18 OPERATION AND FUNCTION .. 71
18.1 Basic functions .. 71
 18.1.1 DIR.CMD -
 Reversal of the effective direction of the positioner set-point value .. 72
 18.1.2 CUTOFF -
 Sealing function for the positioner ... 73
 18.1.3 CHARACT -
 Characteristic correction between input signal (position set-point value) and stroke 74
 18.1.4 INPUT -
 Enter the standard signal ... 76
 18.1.5 RESET -
 Reset to factory settings ... 77
 18.1.6 X.TUNE -
 Automatic calibration of the position controller ... 77
18.2 Auxiliary functions ... 78
 18.2.1 DIR.ACT -
 Reversal of the effective direction of the actuator ... 79
 18.2.2 SPLTRNG -
 Signal split range .. 80
 18.2.3 X.LIMIT -
 Stroke limit ... 81
 18.2.4 X.TIME -
 Limit actuating time ... 82
 18.2.5 X.CONTROL -
 Control parameters of the positioner ... 83
 18.2.6 SAFPOS -
 Definition of the safe position .. 83
 18.2.7 SIG.ERROR -
 Configuration of cable break detection (only for variant without fieldbus communication) 84
 18.2.8 BINARY.IN (variant) -
 Configuration of the digital input (only for variant without fieldbus communication) 84
 18.2.9 OUTPUT (variant) -
 Configuration of the analog output (only for variant without fieldbus communication) 85
 18.2.10 Setting the LED mode, device status .. 85
19 SAFETY END POSITIONS .. 86
19.1 Safety end positions after failure of the electrical or pneumatic auxiliary power 86

20 MAINTENANCE ... 87
20.1 Safety instructions ... 87
20.2 Service at the air intake filter ... 88

21 ACCESSORIES ... 89
21.1 Communications software ... 89

22 DISASSEMBLY .. 90
22.1 Safety instructions ... 90
22.2 Disassembly the positioner ... 90

23 TRANSPORTATION, STORAGE, DISPOSAL... 92
1 ABOUT THESE INSTRUCTIONS

The operating instructions describe the entire life cycle of the device.

→ Keep these instructions ready to hand at the operation site.

Important safety information.
▶ Carefully read these instructions.
▶ Observe in particular the safety instructions, intended use and operating conditions.
▶ Persons, who work on the device, must read and understand these instructions.

1.1 Symbols

⚠️ DANGER
Warns of an immediate danger.
▶ Failure to observe the warning will result in a fatal or serious injury.

⚠️ WARNING
Warns of a potentially dangerous situation.
▶ Failure to observe the warning may result in a fatal or serious injury.

⚠️ CAUTION
Warns of a possible danger.
▶ Failure to observe the warning may result in moderate or minor injuries.

NOTE
Warns of damage to property.
▶ Failure to observe the warning may result in damage to device or system.

⚠️ Indicates important additional information, tips and recommendations.

📖 Refers to information in these operating instructions or in other documentation.

▶ Indicates an instruction for risk prevention.
→ Indicates a procedure which you must carry out.
✔️ Indicates a result.

Menu Indicates a interface text.
1.2 Definition of terms

In these instructions the term “device” denotes the following device types:

Positioner Type 8694 REV.2

The term “büS” (Bürkert system bus) used in this instruction stands for the communication bus developed by Bürkert and based on the CANopen protocol.

In these instructions, the abbreviation “Ex” always refers to “potentially explosive atmosphere”.

1.3 Firmware changes

<table>
<thead>
<tr>
<th>As of firmware version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.6</td>
<td>Display of “valve position half-way” changed from “LED off” to “LED is lit white”</td>
</tr>
</tbody>
</table>
2 INTENDED USE

The Positioner Type 8694 REV.2 is designed to be mounted on pneumatic actuators of process valves for the control of media. The permitted fluid media are listed in the technical data.

▶ Use the device for its intended purpose only. Non-intended use of the device may be dangerous to people, nearby equipment and the environment.

▶ Correct transportation, correct storage as well as correct installation, commissioning, operation and maintenance are essential for reliable and problem-free operation.

▶ When using the device, observe the permitted data, operating conditions and application conditions. This information can be found in the contractual documents, the operating instructions and on the type label.

▶ Use the device only in conjunction with third-party devices and components recommended and authorized by Bürkert.

▶ Do not use the device outdoors without protection from the weather.

▶ In potentially explosive atmosphere, only use devices approved for use in those areas. These devices are labeled with a separate Ex type label. For such use, note the information provided on the separate Ex type label and the additional explosion-related information or separate explosion-related operating instructions.

▶ Do not remove the operating and display elements from the device.
3 BASIC SAFETY INSTRUCTIONS

These safety instructions do not consider any contingencies or incidents which occur during installation, operation and maintenance.

The operator is responsible for observing the location-specific safety regulations, also with reference to the personnel.

⚠️ DANGER
Risk of injury from high pressure and discharge of medium.
▶ Before working on the device or system, switch off the pressure. Vent or drain lines.

⚠️ DANGER
Risk of injury from electric shock.
▶ Before working on the device or system, switch off the power supply. Secure against reactivation.
▶ Observe applicable accident prevention and safety regulations for electrical equipment.

⚠️ To prevent injury, ensure the following:
▶ Secure device or system to prevent unintentional activation.
▶ Only trained technicians may perform installation and maintenance work.
▶ Perform installation and maintenance with suitable tools only.
▶ Do not make any changes to the device and do not subject it to mechanical stress.
▶ Operate the device only in perfect state and in consideration of the operating instructions.
▶ Observe the general rules of technology.
▶ Install the device according to the regulations applicable in the respective country.
▶ Do not feed corrosive or flammable media into the device connections.
▶ Do not feed any fluids into the connections of the device.
▶ After the process is interrupted, restart in a controlled manner. Observe sequence:
 1. Connect electrical or pneumatic power supply.
 2. Charge the device with medium.
▶ Observe intended use.

NOTE
Electrostatic sensitive components or modules.
The device contains electronic components, which react sensitively to electrostatic discharge (ESD). Contact with electrostatically charged persons or objects is hazardous to these components. In the worst case scenario, they will be destroyed immediately or will fail after start-up.
▶ Observe the requirements in accordance with EN 61340-5-1 and to minimize or avoid the possibility of damage caused by sudden electrostatic discharge.
▶ Also ensure that you do not touch electronic components when the power supply is on.
4 GENERAL INFORMATION

4.1 Contact address

Germany
Bürkert Fluid Control System
Sales Center
Chr.-Bürkert-Str. 13-17
D-74653 Ingelfingen
Tel. + 49 (0) 7940 - 10 91 111
Fax + 49 (0) 7940 - 10 91 448
E-mail: info@burkert.com

International
Contact addresses can be found on the final pages of the printed operating instructions.
And also on the Internet at:
www.burkert.com

4.2 Warranty

The warranty is only valid if the positioner Type 8694 is used as intended in accordance with the specified application conditions.

4.3 Trademarks

Brands and trademarks listed below are trademarks of the corresponding companies / associations / organizations
Loctite Henkel Loctite Deutschland GmbH

4.4 Information on the internet

The operating instructions and data sheets for Type 8694 can be found on the Internet at:
www.burkert.com
5 SYSTEM DESCRIPTION

5.1 Intended application area

The positioner Type 8694 is designed to be mounted on pneumatic actuators of process valves for the control of media.

5.2 Function of the positioner and combination with valve types

Positioner Type 8694 is an electropneumatic position controller for pneumatically actuated control valves with single-acting actuators.

Together with the pneumatic actuator, the positioner forms a functional unit.

The control valve systems can be used for a wide range of control tasks in fluid technology and, depending on the application conditions, different process valves belonging to series 2103, 2300, 2301, 26xx or 27xx from the Bürkert range can be combined with the positioner. Angle-seat valves, diaphragm valves or ball valves fitted with a control cone are suitable.

"Figure 1" shows an overview of the possible combinations of positioner and different pneumatically actuated valves. Different actuator sizes and valve nominal widths, not illustrated here, are available for each type. More precise specifications can be found on the respective data sheets. The product range is being continuously expanded.

![Positioner Type 8694 with various valves](image)

Figure 1: Overview of possible combinations

- with angle seat valve Type 2300
- with straight seat valve Type 2301
- with angle seat valve Type 2702
- with diaphragm valve Type 2730
The position of the actuator is regulated according to the position set-point value. The position set-point value is specified by an external standard signal.

Pneumatically actuated piston actuators and rotary actuators can be used as an actuator. Single-acting actuators are offered in combination with the positioner.

For single-acting actuators, only one chamber is aerated and deaerated in the actuator. The generated pressure works against a spring. The piston moves until there is an equilibrium of forces between compressive force and spring force.

5.3 Features of the valve types

<table>
<thead>
<tr>
<th>Types</th>
<th>Angle seat control valves / straight seat control valves</th>
<th>Diaphragm valves</th>
<th>Ball valves</th>
<th>Flap valves</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 2300</td>
<td>• 2103</td>
<td>• 2652</td>
<td>• 2672</td>
</tr>
<tr>
<td></td>
<td>• 2301</td>
<td>• 2730</td>
<td>• 2655</td>
<td>• 2675</td>
</tr>
<tr>
<td></td>
<td>• 2702</td>
<td>• 2731</td>
<td>• 2658</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Features</td>
<td>• incoming flow under seat</td>
<td>• medium is hermetically separated from the actuator and environment</td>
<td>• scrapable</td>
<td>• unaffected by contamination</td>
</tr>
<tr>
<td></td>
<td>• no closing impact</td>
<td>• cavity-free and self-draining body design</td>
<td>• minimum dead space</td>
<td>• little pressure loss compared to other valve types</td>
</tr>
<tr>
<td></td>
<td>• straight flow path of the medium</td>
<td>• any flow direction with low-turbulence flow</td>
<td>• unaffected by contamination</td>
<td>• inexpensive</td>
</tr>
<tr>
<td></td>
<td>• self-adjusting stuffing box for high leak-tightness</td>
<td>• steam-sterilizable</td>
<td>• little pressure loss compared to other valve types</td>
<td>• low construction volume</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• CIP-compliant</td>
<td>• seat and seal can be exchanged in the three-piece ball valve when installed</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• no closing impact</td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• actuator and diaphragm can be removed when the body is installed</td>
<td>can be used as process controller only</td>
<td></td>
</tr>
</tbody>
</table>

Typical media

- water, steam and gases
- alcohols, oils, propellants, hydraulic fluids
- salt solutions, lyes (organic)
- solvents

- neutral gases and liquids
- contaminated, abrasive and aggressive media
- media of higher viscosity

- neutral gases and liquids
- clean water
- slightly aggressive media

- neutral gases and liquids
- slightly aggressive media

Table 1: Features of the valve types
5.4 Structure of the positioner

The positioner Type 8694 consists of the micro-processor controlled electronics, the position sensor and the pilot valve system. The positioner is operated via 2 buttons and a 4-pole DIP switch. The pilot valve system for single-acting actuators consists of 2 solenoid valves.

5.4.1 Representation

Figure 2: Structure
5.4.2 Features

- **Models**
 for single-acting valve actuators.

- **Position sensor**
 Contactless and therefore wear-free position sensor.

- **Microprocessor-controlled electronics**
 for signal processing, control and valve control.

- **Control module**
 The device is controlled via 2 buttons and a 4-pole DIP switch. 2 LEDs (1 RGB LED for device status and 1 green LED for communication interface status) indicate different statuses of the device.

- **Pilot valve system**
 The control system consists of 2 solenoid valves. One valve is used to aerate and another to deaerate the pneumatic actuator. The solenoid valves operate according to the rocker principle and are controlled with a PWM voltage via the controller. Doing so achieves a higher flexibility with regard to actuator volume and final control speed. The low air flow rate model has an orifice of DN 0.6. In larger pneumatic actuators the solenoid valves feature diaphragm amplifiers to increase the maximum flow and therefore to improve the dynamics (DN 2.5).

- **Position feedback**
 The position of the valve can be transmitted to the PLC via an analog 0/4-20 mA output (variant, without fieldbus communication) or digitally via a fieldbus communication (e.g. büS, IO-Link).

- **Digital input (for variant without fieldbus communication)**
 If a voltage > 10 V is applied, safety position (SAFEPOS) is activated*, i.e. the valve is moved to the safety position (factory setting, can be changed with communications software).

- **Pneumatic interfaces**
 G1/8” connections
 hose plug-in connection Ø6 mm

- **Electrical interfaces**
 Circular plug-in connector or cable gland

- **Housing**
 The housing of the positioner is protected from excessively high internal pressure, e.g. due to leaks, by a pressure limiting valve.

- **Communications interface**
 For exchanging process data and for configuration and parameterization.
5.4.3 Function diagram of the positioner with single-acting actuator

The illustrated function diagram describes the function of the positioner (Type 8694).

Figure 3: Function diagram
5.5 Type 8694 positioner (position controller)

The position sensor records the current position (POS) of the pneumatic actuator. The position controller compares this actual position value with the set-point value (CMD) which is definable as standard signal. In case of a control deviation (Xd1), a pulse-width modulated voltage signal is sent to the pilot valve system as a manipulated variable. If there is a positive control difference in single-acting actuators, the air inlet valve is controlled via output B1. If the control difference is negative, the bleed valve is controlled via output E1. In this way the position of the actuator is changed until control difference is 0. Z1 represents a disturbance variable.

![Signal flow plan of position controller](image)

5.5.1 Schematic representation of the position control Type 8694

![Schematic representation of position control](image)

1) **Factory setting**
2) **Can only be activated with communications software**
5.5.2 Functions of the position controller software

Basic functions

- Activation via DIP switches
- Parameter setting via communications software

<table>
<thead>
<tr>
<th>Function</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealing function</td>
<td>Valve closes tight outside the control range. Specification of the value (as %), from which the actuator is completely deaerated (when 0 %) or aerated (when 100 %) (see chapter “7.4 Function of the DIP switches”).</td>
</tr>
<tr>
<td>Characteristic correction</td>
<td>Linearization of the operating characteristic can be implemented (see chapter “7.4 Function of the DIP switches”).</td>
</tr>
<tr>
<td>Reversal of the effective direction set-point value</td>
<td>Reversal of the effective direction of the set-point value (see chapter “7.4 Function of the DIP switches”).</td>
</tr>
</tbody>
</table>

Table 2: Basic functions

Basic functions

- Activation with buttons or communications software

<table>
<thead>
<tr>
<th>Function</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard signal3)</td>
<td>Select set-point value standard signal</td>
</tr>
<tr>
<td>Automatic calibration of the position controller</td>
<td>Reset to factory settings</td>
</tr>
<tr>
<td>X.TUNE</td>
<td></td>
</tr>
<tr>
<td>Reset to factory settings</td>
<td>Reset to factory settings</td>
</tr>
</tbody>
</table>

Table 3: Basic functions

3) Only adjustable with communications software
 Only for variant without fieldbus communication.
Auxiliary functions

- Activation and parameter setting with communications software

<table>
<thead>
<tr>
<th>Function</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal of the effective direction of the actuator</td>
<td>Assignment of the aeration status of the actuator chamber to the actual position.</td>
</tr>
<tr>
<td>DIR.ACT</td>
<td></td>
</tr>
<tr>
<td>Signal split range</td>
<td>Standard signal as % for which the valve runs through the entire mechanical stroke range.</td>
</tr>
<tr>
<td>SPLTRNG</td>
<td></td>
</tr>
<tr>
<td>Stroke limit</td>
<td>Limit the mechanical stroke range</td>
</tr>
<tr>
<td>X.LIMIT</td>
<td></td>
</tr>
<tr>
<td>Limit actuating time</td>
<td>Limit the control speed</td>
</tr>
<tr>
<td>X.TIME</td>
<td></td>
</tr>
<tr>
<td>Control parameters</td>
<td>Parameterize the position controller</td>
</tr>
<tr>
<td>X.CONTROL</td>
<td></td>
</tr>
<tr>
<td>Safety position</td>
<td>Definition of the safety position</td>
</tr>
<tr>
<td>SAFEPOS</td>
<td></td>
</tr>
<tr>
<td>Cable break detection<sup>4)</sup></td>
<td>Configuration of signal level fault detection</td>
</tr>
<tr>
<td>SIG.ERROR</td>
<td></td>
</tr>
<tr>
<td>Digital input<sup>4)</sup></td>
<td>Configuration of the digital input</td>
</tr>
<tr>
<td>BINARY.IN</td>
<td></td>
</tr>
<tr>
<td>Analog output<sup>5)</sup></td>
<td>Configuration of the analog output (variant)</td>
</tr>
<tr>
<td>OUTPUT</td>
<td></td>
</tr>
</tbody>
</table>

⁴⁾ Only for variant without fieldbus communication.

Table 4: Auxiliary functions
5.6 Interfaces of the positioner

- Input for position set-point value\(^\text{5)}\) (4 – 20 mA corresponds to 0 – 100 % (depending on position of DIP switch 1)).
- Digital input\(^\text{7)}\)
 If a voltage > 10 V is applied, safety position (SAFEPOS) is activated, i.e. the valve is moved to the safety position (factory setting, can be changed with communications software).
- Analog position feedback (variant)\(^\text{7)}\)
 The position of the valve can be transmitted via an analog 4 – 20 mA output to the PLC (4 – 20 mA corresponds to 0 – 100 %).

\(^{5)}\) Or via fieldbus communication (büS/CANopen or IO-Link)
\(^{6)}\) Factory setting is 4 – 20 mA, 4-wire
\(^{7)}\) Only for variant without fieldbus communication.

Figure 6: Interfaces

The positioner Type 8694 must be operated in 3-wire or 4-wire connection, i.e. the power (24 V DC) is supplied separately from the set-point value signal.
6 TECHNICAL DATA

6.1 Conformity
In accordance with the EU Declaration of conformity, the positioner Type 8694 is compliant with the EU Directives.

6.2 Standards
The applied standards on the basis of which compliance with the EU Directives is confirmed are listed in the EU type examination certificate and/or the EU Declaration of Conformity.

6.3 Licenses
The product is approved for use in zone 2 and 22 in accordance with ATEX directive 2014/34/EU category 3GD.

Observe instructions on operation in an explosion-risk (Ex) area.
Observe the ATEX additional instructions.

The product is cULus approved. Instructions for use in the UL area see chapter “6.8 Electrical data”.

6.4 Operating conditions

WARNING
Solar radiation and temperature fluctuations may cause malfunctions or leaks.
▶ If the device is used outdoors, do not expose it unprotected to the weather conditions.
▶ Ensure that the permitted ambient temperature does not exceed the maximum value or drop below the minimum value.

<table>
<thead>
<tr>
<th>Ambient temperature</th>
<th>see type label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree of protection</td>
<td></td>
</tr>
<tr>
<td>Evaluated by the manufacturer:</td>
<td>Evaluated by UL:</td>
</tr>
</tbody>
</table>
| IP65 / IP67 according to EN 60529
 (1) | UL Type 4x Rating, indoor only
 (1) |
| Operating altitude | up to 2000 m above sea level |
| Relative air humidity | max. 90% at 60 °C (non condensing) |

(1) Only if cables, plugs and sockets have been connected correctly and in compliance with the exhaust air concept see chapter “9 Pneumatic installation”.

6.5 Mechanical data

Dimensions	See data sheet
Housing material	exterior: PPS, PC, VA, interior: PA 6; ABS
Sealing material	EPDM / (NBR)
Stroke range of valve spindle:	2 – 45 mm
6.6 Pneumatic data

Control medium: neutral gases, air
Quality classes in accordance with ISO 8573-1

Dust content: Quality class 7
max. particle size 40 µm, max. particle density 10 mg/m³

Water content: Quality class 3
max. pressure dew point
-20 °C or min. 10 °C below the lowest operating temperature

Oil content: Quality class X
max. 25 mg/m³

Temperature range of the control medium: -10 – +50 °C

Pressure range of the control medium: 3 – 7 bar

Air output of pilot valve: 7 lN / min (for aeration and deaeration)
(Qn, value according to definition for pressure drop from 7 to 6 bar absolute)
optional: 130 lN / min (for aeration and deaeration)
(only single-acting)

Connections
Plug-in hose connector Ø6 mm / 1/4"
Socket connection G1/8

6.7 Type labels

6.7.1 Type label

Type, Features of the type code applicable to UL and ATEX
Control function, pilot valve, Supply voltage pilot valve
Max. operating pressure
Ambient temperature, version
Serial number, CE marking
Order number, manufacture code
Barcode

Figure 7: UL type label (example)

6.7.2 UL additional label

Degree of protection
Circuit with limited power
NEC Class 2 only
Communication, supply voltage
Power Supply: büS
24V ±25%
max. 3,5 W

Figure 8: UL additional label (example)
6.8 Electrical data

WARNING
Only circuits with limited power may be used for UL approved components according to “NEC Class 2”.

6.8.1 Electrical data, without fieldbus communication

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protection class</td>
<td>III as per DIN EN 61140 (VDE 0140-1)</td>
</tr>
<tr>
<td>Connections</td>
<td>Cable gland M16 x 1.5, wrench size 22 (clamping area 5 – 10 mm) with screw-type terminals for cable cross-sections 0.14 – 1.5 mm² Circular plug-in connector (M12 x 1, 8-pin)</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>24 V DC ± 25%, max. residual ripple 10 %</td>
</tr>
<tr>
<td>Current consumption</td>
<td>max. 190 mA</td>
</tr>
<tr>
<td>Power consumption</td>
<td>max. 3.5 W</td>
</tr>
<tr>
<td>Input resistance for set-point value signal</td>
<td>75 Ω at 0/4 – 20 mA / 12 bit resolution</td>
</tr>
<tr>
<td>Analogue position feedback max. load for current output 0/4 – 20 mA</td>
<td>560 Ω</td>
</tr>
<tr>
<td>Digital input</td>
<td>0 – 5 V = logical “0”, 12 - 30 V = logical “1” logic invertible in software</td>
</tr>
<tr>
<td>Communications interface</td>
<td>Connection to PC via USB bus interface set</td>
</tr>
<tr>
<td>Communication software</td>
<td>Bürkert Communicator</td>
</tr>
</tbody>
</table>

MAN 1000396587, EN, Version: E Status: RL (released | freigegeben), printed: 17.04.2023
6.8.2 Electrical data, IO-Link

Protection class	 III as per DIN EN 61140 (VDE 0140-1)
Connection	 Circular plug-in connector M12 x 1, 5-pin, A-coded
Port Class A
Operating voltage	 24 V DC ±25 % (according to specification)
Current consumption	 max. 150 mA
Port Class B
Operating voltage
System supply (Pin 1+3)	 24 V DC ±25 % (according to specification)
Actuator supply (Pin 2+5)\(^9\)	 24 V DC ±25 % (according to specification)
Current consumption
System supply (Pin 1+3)	 max. 50 mA
Actuator supply (Pin 2+5)	 max. 100 mA
Total power consumption	 max. 3.5 W

\(^9\) Actuator supply is galvanically isolated from system supply in accordance with IEC 60664 and for electrical safety in accordance with SELV from IEC 61010-2-201

6.8.3 Electrical data, büS

Protection class	 III as per DIN EN 61140 (VDE 0140-1)
Connection	 Circular plug-in connector M12 x 1, 5-pin, A-coded
Operating voltage	 24 V DC ±25 %
Current consumption	 max. 150 mA
Total power consumption	 max. 3.5 W

6.8.4 Electrical data, AS-Interface

Protection class	 III as per DIN EN 61140 (VDE 0140-1)
Connection
Supply	 Circular plug-in connector M12 x 1, 4-pin
Communication	 büS service interface
Operating voltage
System supply (Pin 1+3)	 via AS-Interface power supply unit acc. to
only for variant with additional actuator supply (AUX Power) (Pin 2+4)*	 24 V === ±10 %
Current consumption
System supply (Pin 1+3)	 without additional actuator supply max. 150 mA @23 V ===
with additional actuator supply (AUX Power) max. 50 mA @23 V ===
only with additional actuator supply (AUX Power) (Pin 2+4)	 max. 100 mA @24 V ±10 %
Communication software	 Bürkert Communicator

* The power supply unit must include a secure disconnection in accordance with IEC 364-4-41 (PELV or SELV)
6.9 Factory settings of the positioner

Functions can be activated via DIP switches:

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUTOFF</td>
<td>Sealing function below</td>
<td>2 %</td>
</tr>
<tr>
<td></td>
<td>Sealing function above</td>
<td>98 %</td>
</tr>
<tr>
<td>CHARACT</td>
<td>Characteristic correction</td>
<td>FREE$^{(10)}$</td>
</tr>
<tr>
<td>DIR.CMD</td>
<td>Reversal of the effective direction set-point value</td>
<td>Off</td>
</tr>
</tbody>
</table>

Table 5: Factory settings

Functions can be activated via communications software:

<table>
<thead>
<tr>
<th>Function</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>Set-point value input</td>
<td>4 – 20 mA, 4-wire</td>
</tr>
<tr>
<td>DIR.ACT</td>
<td>Reversal of the effective direction of the actuator</td>
<td>Off</td>
</tr>
<tr>
<td>SPLTRNG</td>
<td>Signal split range below</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>Signal split range above</td>
<td>100 %</td>
</tr>
<tr>
<td>X.LIMIT</td>
<td>Stroke limit below</td>
<td>0 %</td>
</tr>
<tr>
<td></td>
<td>Stroke limit above</td>
<td>100 %</td>
</tr>
<tr>
<td>X.TIME</td>
<td>Actuating time Open</td>
<td>(1 s) values determined by X.TUNE</td>
</tr>
<tr>
<td></td>
<td>Actuating time Closed</td>
<td>(1 s) values determined by X.TUNE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After implementation of RESET: 5 s</td>
</tr>
<tr>
<td>X.CONTROL</td>
<td>Deadband</td>
<td>1,0 %</td>
</tr>
<tr>
<td></td>
<td>Open amplification factor</td>
<td>(1) values determined by X.TUNE</td>
</tr>
<tr>
<td></td>
<td>Close amplification factor</td>
<td>(1) values determined by X.TUNE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>After implementation of RESET: 1</td>
</tr>
<tr>
<td>SAFEPOS</td>
<td>Safety position</td>
<td>0 %</td>
</tr>
<tr>
<td>SIG.ERROR$^{(11)}$</td>
<td>Cable break detection set-point value</td>
<td>Deactivated</td>
</tr>
<tr>
<td>BINARY.IN$^{(11)}$</td>
<td>Digital input function</td>
<td>Safety position</td>
</tr>
<tr>
<td></td>
<td>Operating principle of digital input</td>
<td>Normally open</td>
</tr>
<tr>
<td>OUTPUT (variant)</td>
<td>Norm signal output: Parameter</td>
<td>Position (POS)</td>
</tr>
<tr>
<td></td>
<td>Norm signal output: Type</td>
<td>4 – 20 mA</td>
</tr>
</tbody>
</table>

Table 6: Factory settings

$^{(10)}$ Without change to the settings via the communications software a linear characteristic is stored in FREE.

$^{(11)}$ Only for variant without fieldbus communication.
7 CONTROL AND DISPLAY ELEMENTS

The following chapter describes the operating statuses as well as the control and display elements of the positioner. Further information on the operation of the positioner can be found in the chapter entitled “14 Start-up.”

7.1 Operating state

![Warning]
To operate the DIP switches and buttons, make sure that the local control lock is deactivated/unlocked (factory setting): with communication software or fieldbus communication.

AUTOMATIC (AUTO)
Normal controller mode is implemented and monitored in AUTOMATIC operating state.

MANUAL
In MANUAL operating state the valve can be opened and closed manually via the buttons. DIP switch 4 can be used to switch between the two operating states AUTOMATIC and MANUAL.

7.2 Control and display elements of the positioner

![Warning]
To operate the DIP switches and buttons, make sure that the local control lock is deactivated/unlocked (factory setting): with communication software or fieldbus communication.

![Diagram]

Figure 9: Description of control elements

The positioner features 2 buttons, 4-pole DIP switches and 2 LEDs as a display element.

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

- When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

→ To operate the buttons and DIP switches, unscrew the transparent cap.
Figure 10: Open positioner

Figure 11: Position of the seal in the body casing

NOTE

Damage or malfunction due to penetration of dirt and humidity.

- To observe degree of protection IP65 / IP67, screw the transparent cap in all the way.

→ Close the device (assembly tool: 67407712).

12) The assembly tool (674077) is available from your Bürkert sales office.
7.3 Configuration of the buttons

To operate the DIP switches and buttons, make sure that the local control lock is deactivated/unlocked (factory setting): with communication software or fieldbus communication.

The configuration of the 2 buttons varies depending on the operating state (AUTOMATIC / MANUAL).

The description of the operating states (AUTOMATIC / MANUAL) can be found in the chapter entitled “7.1 Operating state”.

![Figure 12: Description of the buttons](image)

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

- When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

→ To operate the buttons, unscrew the transparent cap

![Figure 13: Open positioner](image)

MANUAL operating state (DIP switch 4 set to ON):

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aerate (manually open / close the actuator)²³</td>
</tr>
<tr>
<td>2</td>
<td>Deaerate (manually open / close the actuator)²³</td>
</tr>
<tr>
<td>1 and 2 simultaneously</td>
<td>Longer than 10 s (< 30 s, LED 2 flashes at 5 Hz): Device restart</td>
</tr>
<tr>
<td></td>
<td>Longer than 30 s (LED 2 flashes at 10 Hz): Reset device to factory setting</td>
</tr>
</tbody>
</table>

Table 7: Configuration of the buttons for MANUAL operating state

²³ Depending on the operating principle of the actuator.
AUTOMATIC operating state (DIP switch 4 set to OFF):

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Start the X.TUNE function: press button for 5 seconds until LED 2 (green) flashes</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>1 and 2 simultaneously</td>
<td>Longer than 10 s (< 30 s, LED 2 flashes at 5 Hz): Device restart</td>
</tr>
<tr>
<td></td>
<td>Longer than 30 s (LED 2 flashes at 10 Hz): Reset device to factory setting</td>
</tr>
</tbody>
</table>

Table 8: Configuration of the buttons for AUTOMATIC operating state

![Figure 14: Position of the seal in the body casing](Image)

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

- When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

Damage or malfunction due to penetration of dirt and humidity.

- To observe degree of protection IP65 / IP67, screw the transparent cap in all the way.

→ Close the device (assembly tool: 674077\(^{14}\)).

\(^{14}\) The assembly tool (674077) is available from your Bürkert sales office.
7.4 Function of the DIP switches

To operate the DIP switches and buttons, make sure that the local control lock is deactivated/unlocked (factory setting): with communication software or fieldbus communication.

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

▶ When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

To operate the DIP switches, unscrew the transparent cap

Figure 15: Open positioner

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>Reversal of the effective direction of the set-point value (DIR.CMD) (set-point value 20 – 4 mA corresponds to position 0 – 100 %), descending</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Normal effective direction of the set-point value (set-point value 4 – 20 mA corresponds to position 0 – 100 %), ascending</td>
</tr>
<tr>
<td>2</td>
<td>ON</td>
<td>Sealing function active. The valve completely closes below 2 %<sup>15</sup> and opens above 98 % of the set-point value (CUTOFF)</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>No sealing function</td>
</tr>
<tr>
<td>3</td>
<td>ON</td>
<td>Characteristic correction for adjustment of the operating characteristic (linearization of the process characteristic CHARACT)<sup>16</sup></td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Linear characteristic</td>
</tr>
<tr>
<td>4</td>
<td>ON</td>
<td>Operating status MANUAL (BY HAND)</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Operating status AUTOMATIC (AUTO)</td>
</tr>
</tbody>
</table>

Table 9: DIP Switches

¹⁵ Factory setting, can be changed via communications software.

¹⁶ The characteristic type can be changed via communications software.
Information about the communications software:

The switching position of the DIP switch has priority over the settings via the communications software.

If the values of the sealing function (CUTOFF) or the correction characteristic (CHARACT) are changed via the communications software, the corresponding function must be active (DIP switches set to ON). The effective direction of the set-point value (DIR.CMD) can be changed via the DIP switches only. If the correction characteristic (CHARACT) is not changed via the communications software, a linear characteristic is saved when DIP switch 3 is set to ON.

A detailed description of the functions can be found in the chapter entitled “Basic functions”.

![Diagram of seal in body casing]

Figure 16: Position of the seal in the body casing

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

- When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

Damage or malfunction due to penetration of dirt and humidity.

- To observe degree of protection IP65 / IP67, screw the transparent cap in all the way.

→ Close the device (assembly tool: 674077).
7.5 Display of the LEDs

<table>
<thead>
<tr>
<th>LED 1 (RGB)</th>
<th>Display of the device status and valve position</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED 2 (green)</td>
<td>Display of the bus status and feedback during pressing buttons to start functions</td>
</tr>
<tr>
<td></td>
<td>• X.TUNE</td>
</tr>
<tr>
<td></td>
<td>• Device restart</td>
</tr>
<tr>
<td></td>
<td>• Reset to factory settings</td>
</tr>
</tbody>
</table>

Figure 17: LED display

7.5.1 Device status display

The LED 1 (RGB) show the device status.

The user can set the following LED modes for the display of device status and valve position.

- NAMUR mode
- Valve mode
- Valve mode with warnings (factory setting)
- Fixed color
- LED off

The LED mode and the colors of the valve position can be set with the Bürkert Communicator.

IO-Link:
The LED mode and the colors of the valve position can be also set with an acyclic parameter (see parameter list).

The description for setting the LED mode can be found in the chapter “18.2.10 Setting the LED mode, device status”.
7.5.1.1 Valve mode
Displays in valve mode:
• Valve position: open, half-way, closed
• Device status: Error

<table>
<thead>
<tr>
<th>Valve position</th>
<th>Valve position status, color</th>
<th>Device status: Error status, color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td>is lit yellow(^{18})</td>
<td>flashes red alternately with yellow(^{18})</td>
</tr>
<tr>
<td>Half-way</td>
<td>is lit white(^{18}(19))</td>
<td>flashes red alternately with white(^{18}(19))</td>
</tr>
<tr>
<td>Closed</td>
<td>is lit green(^{18})</td>
<td>flashes red alternately with green(^{18})</td>
</tr>
</tbody>
</table>

Table 10: Valve mode

7.5.1.2 Valve mode + warnings
Displays in valve mode + warnings:
• Valve position: open, half-way, closed
• Device status: failure, function check, out of specification, maintenance required (according to NAMUR)

<table>
<thead>
<tr>
<th>Valve position</th>
<th>Device status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Status, color</td>
</tr>
<tr>
<td>Open</td>
<td>is lit yellow(^{18})</td>
</tr>
<tr>
<td>Half-way</td>
<td>is lit white(^{18}(19))</td>
</tr>
<tr>
<td>Closed</td>
<td>is lit green(^{18})</td>
</tr>
</tbody>
</table>

Table 11: Valve mode + warnings, normal operation

If several device statuses exist simultaneously, the device status with the highest priority is displayed.

<table>
<thead>
<tr>
<th>Valve position</th>
<th>Device status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Status, color</td>
</tr>
<tr>
<td>Open</td>
<td>flashes red</td>
</tr>
<tr>
<td>Half-way</td>
<td>flashes red</td>
</tr>
<tr>
<td>Closed</td>
<td>flashes red</td>
</tr>
</tbody>
</table>

Table 12: Valve mode + warnings, device status

For warning messages, the LEDs are briefly switched off between the change of the colors.
For localizations, the colors are only shown momentarily.

\(^{18}\) Factory setting, selectable colors for the valve position: Off, white, green, blue, yellow, orange, red

\(^{19}\) As of firmware A.1.6
7.5.1.3 NAMUR mode

The device status LED show the device status.

The display elements change color in accordance with NAMUR NE 107.

If several device statuses exist simultaneously, the device status with the highest priority is displayed. The priority is determined by the severity of the deviation from controlled operation (red LED = failure = highest priority).

<table>
<thead>
<tr>
<th>Color</th>
<th>Color code</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>5</td>
<td>Outage, error or malfunction</td>
<td>Normal operation is not possible due to a malfunction in the device or on its peripheral equipment.</td>
</tr>
<tr>
<td>Orange</td>
<td>4</td>
<td>Function check</td>
<td>Work is being carried out on the device; normal operation is therefore temporarily not possible</td>
</tr>
<tr>
<td>Yellow</td>
<td>3</td>
<td>Out of specification</td>
<td>Ambient conditions or process conditions for the device are outside the specified area.</td>
</tr>
<tr>
<td>Blue</td>
<td>2</td>
<td>Maintenance required</td>
<td>The device is in normal operation, although a function is briefly restricted. → Service device.</td>
</tr>
<tr>
<td>Green</td>
<td>1</td>
<td>Diagnostics active</td>
<td>Device is operating perfectly. Status changes are indicated in different colors. Messages are transmitted via a fieldbus if connected.</td>
</tr>
</tbody>
</table>

Table 13: Description of the colors

7.5.2 Status LED, green

LED 2 (green) indicates the following:

<table>
<thead>
<tr>
<th>Color</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>is not lit</td>
<td>IO-Link communication inactive(^{20})</td>
</tr>
<tr>
<td></td>
<td>flashes</td>
<td>IO-Link communication active(^{20})</td>
</tr>
<tr>
<td></td>
<td>flashes with 5 Hz</td>
<td>Feedback during pressing button 1 (start X.TUNE) or button 1+2 (device restart) > 5 s</td>
</tr>
<tr>
<td></td>
<td>flashes with 10 Hz</td>
<td>Feedback during pressing button 1+2 (reset to factory settings) > 30 s</td>
</tr>
</tbody>
</table>

Table 14: LED 2, green

\(^{20}\) Only IO-Link variant.
7.6 Error messages

7.6.1 Messages for device status „Out of specification“

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature limit exceeded</td>
<td>Ambient temperature is too high</td>
<td>Reduce ambient temperature. If problems continue, contact your Bürkert Service Center</td>
</tr>
<tr>
<td>Temperature limit not achieved</td>
<td>Ambient temperature is too low</td>
<td>Increase ambient temperature</td>
</tr>
<tr>
<td>Voltage limit exceeded</td>
<td>Supply voltage is too high</td>
<td>Check supply voltage</td>
</tr>
<tr>
<td>Voltage limit not achieved</td>
<td>Supply voltage is too low</td>
<td>Check supply voltage</td>
</tr>
<tr>
<td>CMD sensor break</td>
<td>Cable break of the set-point value signal.. The message can be parameterized (see “18.2.7”)</td>
<td>Check the signal line of the set-point value</td>
</tr>
</tbody>
</table>

Table 15: Messages

7.6.2 Messages: Actuator moves to safety position

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excess temperature detected</td>
<td>Device temperature is too high for operation</td>
<td>Reduce ambient temperature. If problems continue, contact your Bürkert Service Center</td>
</tr>
<tr>
<td>Insufficient temperature detected</td>
<td>Device temperature is too low for operation</td>
<td>Increase ambient temperature</td>
</tr>
<tr>
<td>Excess voltage detected</td>
<td>Supply voltage is too high for operation</td>
<td>Check supply voltage</td>
</tr>
<tr>
<td>Insufficient voltage detected</td>
<td>Failure of the supply voltage or supply voltage is too low for operation</td>
<td>Check supply voltage. If problems continue, contact your Bürkert Service Center</td>
</tr>
<tr>
<td>Persistent memory cannot be used: Defective or not available</td>
<td>Writing or reading error of the internal data storage EEPROM</td>
<td>Restart device. If problems continue, contact your Bürkert Service Center</td>
</tr>
<tr>
<td>BueS event: Producer(s) not found</td>
<td>Assigned external büS producer cannot be found</td>
<td>Check signal to büS partner</td>
</tr>
<tr>
<td>BueS event: Bus connection lost / not available</td>
<td>büS network cannot be found</td>
<td>Check büS network</td>
</tr>
<tr>
<td>BueS event: Producer is not operational</td>
<td>Producer is not operational in the status</td>
<td>Check büS producer</td>
</tr>
<tr>
<td>BueS event: A device is using the same address</td>
<td>Another büS participant is using the same address</td>
<td>Assign device and büS participant a unique address</td>
</tr>
<tr>
<td>Error Type</td>
<td>Description</td>
<td>Recommendation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>IO-Link error</td>
<td>No valid process data is received</td>
<td>- Check connection to the IO-Link master</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check whether valid setpoints are sent to the device via the IO-Link interface</td>
</tr>
<tr>
<td>X.TUNE error occurred</td>
<td>The last X.TUNE was not successful.</td>
<td>- Check compressed air supply</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Run X.TUNE</td>
</tr>
<tr>
<td>Actuator supply is down</td>
<td>The actuator supply voltage is too low. Only with IO-Link</td>
<td>Check actuator supply voltage</td>
</tr>
<tr>
<td>POS.Monitor</td>
<td>The set-point position is not reached</td>
<td>- Run X.TUNE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Check compressed air supply.</td>
</tr>
<tr>
<td>CMD sensor break</td>
<td>Cable break of the set-point value signal. The message can be parameterized (see “18.2.7”)</td>
<td>Check the signal line of the set-point value</td>
</tr>
</tbody>
</table>

Table 16: Messages
8 INSTALLATION

8.1 Safety instructions

⚠️ DANGER
Risk of injury from high pressure in the equipment/device.
- Before working on equipment or device, switch off the pressure and deaerate/drain lines.

Risk of electric shock.
- Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
- Observe applicable accident prevention and safety regulations for electrical equipment.

⚠️ WARNING
Risk of injury from improper installation.
- Installation may be carried out by authorized technicians only and with the appropriate tools.

Risk of injury from unintentional activation of the system and an uncontrolled restart.
- Secure system from unintentional activation.
- Following assembly, ensure a controlled restart.

8.2 Installation of the positioner Type 8694 on process valves of series 2103, 2300 and 2301

NOTE
When mounting on process valves with a welded connection, follow the installation instructions in the operating instructions for the process valve.

Procedure:

1. Install switch spindle

 → Unscrew the transparent cap on the actuator and unscrew the position display (yellow cap) on the spindle extension (if present).

 → For version with plug-in hose connector, remove the collets (white nozzles) from both pilot air ports (if present).

Figure 18: Installation of the switch spindle (1), series 2103, 2300 and 2301
NOTE
Improper installation may damage the groove ring in the guide element.

The groove ring is already be pre-assembled in the guide element and must be “locked into position” in the undercut.

▷ When installing the switch spindle, do not damage the groove ring.

→ Push the switch spindle through the guide element.

NOTE
Screw locking paint may contaminate the groove ring.

▷ Do not apply any screw locking paint to the switch spindle.

→ To secure the switch spindle, apply some screw locking paint (Loctite 290) in the tapped bore of the spindle extension in the actuator.

→ Check that the O-ring is correctly positioned.

→ Screw the guide element to the actuator cover (maximum torque: 5 Nm).

→ Screw switch spindle onto the spindle extension. To do this, there is a slot on the upper side (maximum torque: 1 Nm).

→ Push puck onto the switch spindle and lock into position.
2. Install sealing rings

→ Pull the form seal onto the actuator cover (smaller diameter points upwards).
→ Check that the O-rings are correctly positioned in the pilot air ports.

⚠️ When the positioner is being installed, the collets of the pilot air ports must not be fitted to the actuator.

![Diagram of form seal and pilot air port with caution note]

Figure 20: Installation of the sealing rings, series 2103, 2300 and 2301

3. Install positioner

→ Align the puck and the positioner until
 1. the puck can be inserted into the guide rail of the positioner (see “Figure 21”) and
 2. the connection pieces of the positioner can be inserted into the pilot air ports of the actuator (see also “Figure 22”).

NOTE

Damaged printed circuit board or malfunction.

▶ Ensure that the puck is situated flat on the guide rail.

![Diagram of guide rail, puck, and puck alignment]

Figure 21: Aligning the puck
→ Push the positioner, without turning it, onto the actuator until no gap is visible on the form seal.

NOTE

Too high torque when screwing in the fastening screw does not ensure degree of protection IP65 / IP67.

▶ The fastening screws may be tightened to a maximum torque of 1.5 Nm only.

→ Attach the positioner to the actuator using the two side fastening screws. In doing so, tighten the screws only hand-tight (max. torque: 1.5 Nm).

8.3 Installing the positioner Type 8694 on process valves belonging to series 26xx and 27xx

Procedure:

1. **Install switch spindle**

 → Unscrew the already fitted guide element from the actuator (if present).

 → Remove intermediate ring (if present).
→ Press the O-ring downwards into the cover of the actuator.

→ Actuator size Ø125 and bigger with high air flow rate: remove existing spindle extension and replace with the new one. To do this, apply some screw locking paint (Loctite 290) in the tapped bore of the spindle extension.

→ Screw the guide element into the cover of the actuator using a face wrench\(^{21}\) (torque: 8.0 Nm).

→ To secure the switch spindle, apply some screw locking paint (Loctite 290) to the thread of the switch spindle.

→ Screw the switch spindle onto the spindle extension. To do this, there is a slot on the upper side (maximum torque: 1 Nm).

→ Push the puck onto the switch spindle until it engages.

\(^{21}\) Journal Ø: 3 mm; journal gap: 23.5 mm
2. Install positioner

→ Push the positioner onto the actuator. The puck must be aligned in such a way that it is inserted into the guide rail of the positioner.

NOTE
Damaged printed circuit board or malfunction.

▶ Ensure that the puck is situated flat on the guide rail.

Figure 25: Aligning the puck

→ Press the positioner all the way down as far as the actuator and turn it into the required position.

Figure 26: Installing the positioner

Ensure that the pneumatic connections of the positioner and those of the valve actuator are situated preferably vertically one above the other. If they are positioned differently, longer hoses may be required other than those supplied in the accessory kit.

NOTE
Too high torque when screwing in the fastening screw does not ensure degree of protection IP65 / IP67.

▶ The fastening screws may be tightened to a maximum torque of 1.5 Nm only.

→ Attach the positioner to the actuator using the two side fastening screws. In doing so, tighten the fastening screws hand-tight only (maximum torque: 1.5 Nm).
3. Install pneumatic connection between positioner and actuator

→ Screw the plug-in hose connectors onto the positioner and the actuator.
→ Using the hoses supplied in the accessory kit, make the pneumatic connection between the positioner and actuator with the following “Table 17: Pneumatic connection to actuator, CFA” or “Table 18: Pneumatic connection to actuator, CFB”.

NOTE
Damage or malfunction due to ingress of dirt and moisture.
To observe degree of protection IP65 / IP67:

- In the case of actuator size Ø 80, Ø 100 connect the pilot air outlet which is not required to the free pilot air port of the actuator or seal with a plug.
- In the case of actuator size Ø 125 seal the pilot air outlet 22 which is not required with a plug and feed the free pilot air port of the actuator via a hose into a dry environment.

<table>
<thead>
<tr>
<th>Control function A (CFA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process valve closed in rest position (by spring force)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuator size</th>
<th>Ø 80, Ø 100</th>
<th>Ø 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioner</td>
<td>Pilot air outlet</td>
<td></td>
</tr>
<tr>
<td>Actuator</td>
<td>Upper pilot air port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower pilot air port</td>
<td></td>
</tr>
<tr>
<td>Dry area</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 17: Pneumatic connection to actuator, CFA
Control function B (CFB)
Process valve open in rest position (by spring force)

<table>
<thead>
<tr>
<th>Actuator size</th>
<th>(\varnothing) 80, (\varnothing) 100</th>
<th>(\varnothing) 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioner</td>
<td>Pilot air outlet</td>
<td></td>
</tr>
<tr>
<td>Actuator</td>
<td>Upper pilot air port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower pilot air port</td>
<td></td>
</tr>
<tr>
<td>Dry area</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18: Pneumatic connection to actuator, CFB

"In rest position" means that the pilot valves of the positioner Type 8694 are isolated or not actuated.

8.4 Installation on rotary actuators from third party manufacturers

→ The magnetic transmitter for the sensor must be assembled on the spindle adapter and the adapter kit must be assembled on the actuator (see adapter kit assembly instructions).

→ Press the angle of rotation sensor into the sensor holder from above until it sits flush.

NOTE
Damage to the sensor cable.
▶ Ensure that the sensor cable is not damaged during assembly.

→ Press down the device as far as the actuator.

NOTE
Damage or malfunction due to ingress of dirt or moisture.
To observe the degree of protection IP65 or IP67:
▶ Tighten fastening screws only with a tightening torque of max. 0.5 Nm.

→ Attach the device to the actuator using both lateral fastening screws.
8.5 Rotating the actuator module

The actuator module (positioner and actuator) can be rotated for straight seat valves and angle seat valves belonging to series 2300, 2301 and 27xx only.

The position of the connections can be aligned steplessly by rotating the actuator module (positioner and actuator) through 360°.

Process valves Type 2300, 2301 and 27xx: Only the entire actuator module can be rotated. The positioner cannot be rotated contrary to the actuator.
The process valve must be in the open position for alignment of the actuator module.

DANGER
Risk of injury from high pressure in the equipment/device.
- Before working on equipment or device, switch off the pressure and deaerate/drain lines.

Procedure:
- Clamp valve body in a holding device (only required if the process valve has not yet been installed).

NOTE
Damage to the seat seal or the seat contour.
- When removing the actuator module, ensure that the valve is in open position.

- Control function A: Open process valve.

- Using a suitable open-end wrench, counter the wrench flat on the pipe.

- Actuator module without hexagon:
 Fit special key 22) exactly in the key contour on the underside of the actuator.

- Actuator module with hexagon:
 Place suitable open-end wrench on the hexagon of the actuator.

Figure 29: Rotating the actuator module
WARNING

Risk of injury from discharge of medium and pressure.

If the direction of rotation is wrong, the body interface may become detached.

- Rotate the actuator module in the specified direction only (see "Figure 30").

→ Actuator module without hexagon:
 Rotate clockwise (as seen from below) to bring the actuator module into the required position.

→ Actuator module with hexagon:
 Rotate counter-clockwise (as seen from below) to bring the actuator module into the required position.

22) The special key (665702) is available from your Bürkert sales office.

8.6 Rotating the positioner for process valves belonging to series 26xx and 27xx

If the connecting cables or hoses cannot be fitted properly following installation of the process valve, the positioner can be rotated contrary to the actuator.
Procedure

→ Loosen the pneumatic connection between the positioner and the actuator.
→ Loosen the fastening screws (hexagon socket wrench size 2.5).
→ Rotate the positioner into the required position.

NOTE

Too high torque when screwing in the fastening screw does not ensure degree of protection IP65 / IP67.

▶ The fastening screw may be tightened to a maximum torque of 1.5 Nm only.

→ Tighten the fastening screws hand-tight only (maximum torque: 1.5 Nm).
→ Re-attach the pneumatic connections between the positioner and the actuator. If required, use longer hoses.
9 PNEUMATIC INSTALLATION

9.1 Safety instructions

⚠️ DANGER
Risk of injury from high pressure in the equipment/device.
- Before working on equipment or device, switch off the pressure and deaerate/drain lines.

⚠️ WARNING
Risk of injury from improper installation.
- Installation may be carried out by authorized technicians only and with the appropriate tools.
Risk of injury from unintentional activation of the system and an uncontrolled restart.
- Secure system from unintentional activation.
- Following installation, ensure a controlled restart.

9.2 Connecting the device pneumatically

Figure 32: Pneumatic connection

Procedure:
→ Connect the control medium to the pilot air port (1) (3 – 7 bar; instrument air, free of oil, water and dust).
→ Attach the exhaust air line or a silencer to the exhaust air port (3)
 and, if available to the exhaust air port (3.1)

⚠️ Caution: (Exhaust air concept):
- In compliance with degree of protection IP67, an exhaust air line must be installed in the dry area.
Important information for the problem-free functioning of the device:

- The installation must not cause back pressure to build up.
- Select a hose for the connection with an adequate cross-section.
- The exhaust air line must be designed in such a way that no water or other liquid can get into the device through the exhaust air port (3) or (3.1).
- Keep the adjacent supply pressure always at least 0.5 – 1 bar above the pressure which is required to move the actuator to its end position. This ensures that the control behavior is not extremely negatively affected in the upper stroke range on account of too little pressure difference.
- During operation keep the fluctuations of the pressure supply as low as possible (max. ±10 %). If fluctuations are greater, the control parameters measured with the X.TUNE function are not optimum.

9.3 Manual actuation of the actuator via pilot valves

9.3.1 Single-acting actuators (control function A and B)

The actuator can be moved without a power supply from the rest position to its end position and back again. To do this, the pilot valves must be actuated with a screwdriver.

NOTE!

The hand lever may be damaged if it is simultaneously pressed and turned.

- Do not press the hand lever when turning it.

Figure 33: Pilot valves for aerate and deaerate the actuator
Move actuator to end position

Turn the hand levers to the right using a screwdriver.

Note:
- do not press the hand levers when turning them
- observe the sequence as described below

1. Actuate hand lever pilot valve deaeration.
2. Actuate hand lever pilot valve aeration.

Both hand levers point to the right.
The actuator moves to the end position.

\[\rightarrow \]

Type 8694 for high air flow rate

Figure 34: Move actuator to end position

Move actuator back to the rest position

Turn the hand levers to the left using a screwdriver.

Note:
- do not press the hand levers when turning them
- observe the sequence as described below

1. Actuate hand lever pilot valve aeration.

Both hand levers point to the left (normal position).
The actuator moves by spring force to the rest position.

\[\rightarrow \]

Type 8694 for high air flow rate

Figure 35: Move actuator back to the rest position

Caution:
If the pilot valves are actuated, electrical control is not possible.

- Move hand levers to normal position before starting up the device.
10 **ELECTRICAL INSTALLATION WITHOUT FIELDBUS**

All electrical inputs and outputs of the device are not galvanically isolated from the supply voltage.

Two kinds of connections are used for the electrical bonding of the positioner:

- **Cable gland**
 - with cable gland M16 x 1.5 and screw-type terminals
- **Multi-pole**
 - with circular plug-in connector M12 x 1, 8-pin

10.1 Safety instructions

⚠️ **DANGER**

Risk of electric shock.

- Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
- Observe applicable accident prevention and safety regulations for electrical equipment.

⚠️ **WARNING**

Risk of injury from improper installation.

- Installation may be carried out by authorized technicians only and with the appropriate tools.

Risk of injury from unintentional activation of the system and an uncontrolled restart.

- Secure system from unintentional activation.
- Following installation, ensure a controlled restart.

Minimum temperature rating of the cable to be connected to the field wiring terminals: 75 °C

10.2 Electrical installation with circular plug-in connector

⚠️ **DANGER**

Risk of electric shock.

- Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
- Observe applicable accident prevention and safety regulations for electrical equipment.

10.2.1 Designation of the contacts Type 8694

![View without body casing](image)

Figure 36: Circular plug M12 x 1, 8-pin
10.2.2 Connection of the positioner Type 8694

→ Connect the pins according to the model of the positioner.

Input signals of the control center (e.g. PLC), circular plug M12 x 1, 8-pin

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire color</th>
<th>Configuration</th>
<th>External circuit / signal level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>white</td>
<td>Set-point value + (0/4 – 20 mA)</td>
<td>1 + (0/4 – 20 mA)</td>
</tr>
<tr>
<td>2</td>
<td>brown</td>
<td>Set-point value GND</td>
<td>2 GND see table connection type</td>
</tr>
<tr>
<td>5</td>
<td>grey</td>
<td>Digital input +</td>
<td>5 + 0 – 5 V (logical 0)</td>
</tr>
<tr>
<td>6</td>
<td>pink</td>
<td>Digital input GND</td>
<td>10 – 30 V (logical 1)</td>
</tr>
</tbody>
</table>

Table 19: Pin assignment, input signals of the control center, circular plug M12 x 1, 8-pin

Connection type 3-wire or 4-wire (setting via communication software):

<table>
<thead>
<tr>
<th>Connection type 4-wire (factory setting)</th>
<th>Connection type 3-wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set-point value input is designed as a differential input, i.e. the GND lines of the set-point value input and the supply voltage are not identical. Note: If the GND signals of the set-point value input and the supply voltage are connected, the 3-wire connection type must be set in the software.</td>
<td>The set-point value input is related to the GND line of the supply voltage, i.e. setpoint input and supply voltage have a common GND line.</td>
</tr>
</tbody>
</table>

Table 20: Connection type

23) The indicated colors refer to the connecting cable available as an accessory (919061)
Output signals to the control center (e.g. PLC), circular plug M 12 x 1, 8-pin
(required for analogue output variant only)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire color</th>
<th>Configuration</th>
<th>External circuit / signal level</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>red</td>
<td>Analogue position feedback +</td>
<td>8 → + (0/4 – 20 mA)</td>
</tr>
<tr>
<td>7</td>
<td>blue</td>
<td>Analogue position feedback GND</td>
<td>7 → GND</td>
</tr>
</tbody>
</table>

Table 21: Pin assignment, output signals of the control center, circular plug M12 x 1, 8-pin

Operating voltage (circular plug M12 x 1, 8-pin)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire color</th>
<th>Configuration</th>
<th>External circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>yellow</td>
<td>+ 24 V</td>
<td>4 → 24 V DC ± 25 % max. residual ripple 10 %</td>
</tr>
<tr>
<td>3</td>
<td>green</td>
<td>GND</td>
<td>3 → GND</td>
</tr>
</tbody>
</table>

Table 22: Pin assignment, operating voltage (circular plug M12 x 1, 8-pin)

When the supply voltage is applied, the positioner is operating.

→ Make the required basic settings and actuate the automatic adjustment of the positioner, as described in the chapter entitled “14 Start-up”.

24) The indicated colors refer to the connecting cable available as an accessory (919061)
10.3 Electrical installation with cable gland

⚠️ DANGER
Risk of electric shock.

- Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
- Observe applicable accident prevention and safety regulations for electrical equipment.

NOTE
Breakage of the pneumatic connection pieces due to rotational impact.

- When unscrewing and screwing in the body casing, do not hold the actuator of the process valve but the basic housing.

→ The screw-type terminals can be accessed by unscrewing the body casing (stainless steel).

→ Push the cables through the cable gland.
Input signals from the control centre (e.g. PLC)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Configuration</th>
<th>External circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Set-point value +</td>
<td>4 + (0/4 – 20 mA)</td>
</tr>
<tr>
<td>5</td>
<td>Set-point value GND</td>
<td>5 GND</td>
</tr>
<tr>
<td>1</td>
<td>Digital input +</td>
<td>1 + 0 – 5 V (logical 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 23: Assignment of screw-type terminals, input signals of the control center, cable gland

Connection type 3-wire or 4-wire (setting via communication software):

Connection type 4-wire (factory setting)

The set-point value input is designed as a differential input, i.e. the GND lines of the set-point value input and the supply voltage are not identical.

Note: If the GND signals of the set-point value input and the supply voltage are connected, the 3-wire connection type must be set in the software.

<table>
<thead>
<tr>
<th>Connection type 3-wire</th>
<th>Connection type 4-wire (factory setting)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set-point value input is related to the GND line of the supply voltage, i.e. setpoint input and supply voltage have a common GND line.</td>
<td></td>
</tr>
</tbody>
</table>

Table 24: Connection type
Output signals to the control center (e.g. PLC; for analog output option only)

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Configuration</th>
<th>External circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Analogue position feedback +</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Analogue position feedback GND</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 25: Assignment of screw-type terminals, output signals to the control center, cable gland

Operating voltage

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Configuration</th>
<th>External circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Operating voltage +</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Operating voltage GND</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 26: Assignment of screw-type terminals, operating voltage, cable gland

![Figure 40: Position of the seal in the body casing](image)

→ Check that the seal is correctly positioned in the body casing.

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

› When unscrewing and screwing in the body casing, do not hold the actuator of the process valve but the basic housing.

Damage or malfunction due to penetration of dirt and humidity.

To ensure degree of protection IP65 / IP67:

› Tighten the union nut on the cable gland according to the cable size or dummy plugs used (approx. 1.5 Nm).
› Screw the body casing in all the way.

→ Tighten union nut on the cable gland (torque approx. 1.5 Nm).
→ Close the device (assembly tool: 67407725).

25) The assembly tool (674077) is available from your Bürkert sales office.
11 ELECTRICAL INSTALLATION, IO-LINK

![Diagram of pin assignment](image)

Figure 41: Pin assignment

Pin assignment Port Class A

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L +</td>
<td>24 V DC</td>
</tr>
<tr>
<td>2</td>
<td>I/Q</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>L –</td>
<td>0 V (GND)</td>
</tr>
<tr>
<td>4</td>
<td>C/Q</td>
<td>IO-Link</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>NC</td>
</tr>
</tbody>
</table>

Table 27: Pin assignment Port Class A

Pin assignment Port Class B

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L +</td>
<td>24 V DC</td>
</tr>
<tr>
<td>2</td>
<td>P24</td>
<td>24 V DC</td>
</tr>
<tr>
<td>3</td>
<td>L –</td>
<td>0 V (GND)</td>
</tr>
<tr>
<td>4</td>
<td>C/Q</td>
<td>IO-Link</td>
</tr>
<tr>
<td>5</td>
<td>N24</td>
<td>0 V (GND)</td>
</tr>
</tbody>
</table>

Table 28: Pin assignment Port Class B
12 ELECTRICAL INSTALLATION, BÜS

Figure 42: Pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Wire color</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAN plate/shielding</td>
<td>CAN plate/shielding</td>
</tr>
<tr>
<td>2</td>
<td>red</td>
<td>+24 V DC ±25%, max. residual ripple 10%</td>
</tr>
<tr>
<td>3</td>
<td>black</td>
<td>GND / CAN_GND</td>
</tr>
<tr>
<td>4</td>
<td>white</td>
<td>CAN_H</td>
</tr>
<tr>
<td>5</td>
<td>blue</td>
<td>CAN_L</td>
</tr>
</tbody>
</table>

Table 29: Pin assignment

For electrical installation with büS network, note:

Use a 5-pin round plug and shielded 5-core cable.

The shielding in the device is not connected to the functional earth.
13 ELEKTRICAL INSTALLATION, AS-INTERFACE

Figure 43: Pin assignment

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bus +</td>
<td>Bus line AS-Interface +</td>
</tr>
<tr>
<td>2</td>
<td>AUX –</td>
<td>Actuator supply – (optional, only for variant with additional actuator supply (AUX Power))</td>
</tr>
<tr>
<td>3</td>
<td>Bus –</td>
<td>Bus line AS-Interface –</td>
</tr>
<tr>
<td>4</td>
<td>AUX +</td>
<td>Actuator supply + (optional, only for variant with additional actuator supply (AUX Power))</td>
</tr>
</tbody>
</table>

Table 30: Pin assignment

13.1 Connecting the device with multi-pole cable and flat cable terminal

As an alternative to the bus connection model with 4-pole circular plug, there is the positioner with multi-pole cable (M12 circular plug) and flat cable terminal. The wiring diagram of the circular plug corresponds to the bus connection of the M12 4-pole circular plug and can easily be connected to the flat cable terminal.

Figure 44: Positioner 8694 with multi-pole cable and flat cable terminal

Calculated bus line length:

When designing the system, consider the length of the cable which is fed directly to the positioner for the maximum bus line length (multi-pole cable and cable inside: 1.0 m).

Example calculation:

When using 62 positioner with multi-pole cable, the AS-Interface flat cable may still be maximum 38 m long.

100 m – 62 x 1.0 m = 38 m
If the calculated bus line length of 100 m is exceeded, a commercially available AS-Interface repeater can be used.

Handling the flat cable terminal

The multi-pole cable features a ribbon cable terminal - with M12 plug-in connector branch circuit - for AS-Interface flat cable. The flat cable terminal contacts the AS-Interface flat cable by means of penetration technology which allows installation by "clipping in" the AS-Interface flat cable without cutting and without removing insulation.

| Work steps: |
| --- | --- |
| → Open the flat cable terminal (loosen screws and remove cover). |
| → Insert flat cable conclusively. |
| → Close flat cable terminal again. |
| → Tighten screws. Slightly undo thread-forming screws (approx. 3/4 turn to the left) and position them on the existing tapped bore and screw in. |

![Flat cable terminal](image)

Figure 45: Flat cable terminal

When the supply voltage is applied, the positioner is operating.

→ Make the required basic settings and actuate the automatic adjustment of the positioner, as described in the chapter entitled Start-up.
14 START-UP

14.1 Safety instructions

⚠️ DANGER
Risk of injury from high pressure in the equipment/device.
- Before working on equipment or device, switch off the pressure and deaerate/drain lines.

⚠️ WARNING
Risk of injury from improper operation.
Improper operation may result in injuries as well as damage to the device and the area around it.
- Before start-up, ensure that the operating personnel are familiar with and completely understand the contents of the operating instructions.
- Observe the safety instructions and intended use.
- Only adequately trained personnel may operate the equipment/the device.

14.2 Specifying the standard settings
The basic settings of the positioner are implemented at the factory.

⚠️ To adjust the positioner to local conditions, the X.TUNE function must be run following installation.

14.2.1 Running the automatic adjustment X.TUNE

⚠️ WARNING
Danger due to the valve position changing when the X.TUNE function is running.
When the X.TUNE is running under operating pressure, there is an acute risk of injury.
- Never run X.TUNE while a process is running.
- Take appropriate measures to prevent the equipment from being accidentally actuated.

NOTE
Avoid maladjustment of the controller due to an incorrect pilot pressure or applied operating medium pressure.
- Run X.TUNE whenever the pilot pressure (= pneumatic auxiliary energy) is available during subsequent operation.
- Run the X.TUNE function preferably without operating medium pressure to exclude interference caused by flow forces.

⚠️ To run X.TUNE, the positioner must be in the AUTOMATIC operating status (DIP switch 4 = OFF).
NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

- When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

→ To operate the DIP switches, unscrew the transparent cap

Figure 46: Open positioner

Figure 47: Automatic adjustment X.TUNE

⚠️ To run X.TUNE, the positioner must be in the AUTOMATIC operating status (DIP switch 4 = OFF).

→ Start the X.TUNE by pressing button 1\(^{26}\) for 5 s.

LED 2 flashes at 5 Hz. The device is in the NAMUR status function check, LED 1 lights orange.

If the X.TUNE is successfully completed, the NAMUR status is reset again. The changes are automatically transferred to the memory (EEPROM) provided the X.TUNE function is successful.

When LED 1 lights red after X.TUNE:

→ Execute X.TUNE again.

→ Perform a device restart if necessary.

\(^{26}\) The X.TUNE can also be started via communications software.
NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

▶ When unscrewing and screwing in the body casing or transparent cap, do not hold the actuator of the process valve but the basic housing.

Damage or malfunction due to penetration of dirt and humidity.

▶ To observe degree of protection IP65 / IP67, screw the transparent cap in all the way.

→ Close the device (assembly tool: 67407727).

14.3 Setting with Bürkert Communicator

The Bürkert Communicator can be used to make all settings on the device.

The settings in the Bürkert Communicator can be found in the operating manual.

14.3.1 Connecting IO-Link device with Bürkert Communicator

Required components:

• Communications software: Bürkert Communicator for PC
• USB-büs interface set (see accessories)
• büS adapter for büS service interface (see accessories)
• If necessary, a büS cable extension (see accessories)

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

▶ When opening or closing the device, do not press against the actuator, but against the basic housing.

→ Screw off the transparent cap by turning counterclockwise.

27 The assembly tool (674077) is available from your Bürkert sales office.
Start-up

Figure 49: Open positioner

Figure 50: Automatic adjustment X.TUNE

→ Insert micro USB plug in communications interface.
→ Establish connection to PC with USB-büs interface set.
→ Starting Bürkert Communicator.
→ Implementing settings.

14.3.2 Connecting büS device with Bürkert Communicator

Required components:
• Communications software: Bürkert Communicator for PC
• USB-büs interface set (see accessories)

→ Establish connection to PC with USB-büs interface set.
→ Starting Bürkert Communicator.
→ Implementing settings.
15 IO-LINK

15.1 Information, IO-Link

IO-Link is an internationally standardized IO technology (IEC 61131-9) to enable sensors and actuators to communicate.

IO-Link is a point-to-point communication with 3-wire connection technology for sensors and actuators and unshielded standard sensor cables.

To ensure clear communication, the IO-Link devices should not be parameterised simultaneously by the higher-level controller (PLC) via the IO-Link master and with the Bürkert Communicator (via the service

15.2 Technical specifications, IO-Link

IO-Link specifications V1.1.2
Supply via IO-Link (M12 x 1, 5-pin, A-coded)
Port Class A or B
SIO mode no
IODD file see Internet
VendorID 0x0078, 120
DeviceID see IODD file
ProductID 8694
Transmission speed COM3 (230.4 kbit/s)
PD Input Bits 80
PD Output Bits 40
M-sequence Cap. 0x0D
Min. cycle time 5 ms
Data storage Yes
Max. cable length 20 m

15.2.1 Configuration of the fieldbus

The required start-up files and the description of the process data and acyclic parameters are available on the Internet.

Download from: www.burkert.com / Type 8694 / Software
16 BÜS

16.1 Information, büS

büS is a system bus developed by Bürkert with a communication protocol based on CANopen.

16.2 Configuration of the fieldbus

The required start-up files and the description of objects are available on the Internet.

Download from:
www.burkert.com / Type 8694 / Software
17 AS-INTERFACE

17.1 Information, AS-Interface

AS-Interface (Actuator Sensor Interface) is a field bus system which is used primarily for networking binary sensors and actuators (slaves) with a higher-level control (master). The unshielded two-wire line is used to transmit both the information (data) and the energy to supply the actuators and sensors.

17.2 Length of the bus line

The bus line may have a maximum length of 100 m. During the design phase, consider all AS-Interface lines in an AS-Interface section, i.e. even the stub lines to the individual slaves.

The development stage which is actually possible depends on the sum of all the individual operating currents per positioner which are supplied on a common AS-Interface bus segment via the bus.

- Observe the maximum power supply ≤ 8 A via certified AS-Interface power supply units. Details see AS-Interface specification.
- Note the optional model “AS-Interface with external power supply” to relieve the AS-Interface bus segment.
- Use cables according to the AS-Interface specification. If other cables are used, the maximum bus line length will change.

17.3 Technical data for AS-Interface PCBs

<table>
<thead>
<tr>
<th>Supply</th>
<th>Outputs</th>
<th>Inputs</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>via AS-Interface</td>
<td>16 bit set-point value</td>
<td>-</td>
<td>Certificate no. xxxx after version 3.0</td>
</tr>
</tbody>
</table>

Table 31: Technical data

17.4 Programming data

<table>
<thead>
<tr>
<th>E/A-Konfiguration</th>
<th>ID-Code</th>
<th>Extended ID Code 1</th>
<th>Extended ID Code 2</th>
<th>Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 hex</td>
<td>3 hex (analog profile)</td>
<td>F hex (Default value, can be changed by the user)</td>
<td>4 hex</td>
<td>S-7.3.4</td>
</tr>
<tr>
<td>7 hex</td>
<td>A hex</td>
<td>7 hex</td>
<td>5 hex</td>
<td>S-7.A.5</td>
</tr>
</tbody>
</table>

Table 32: Programming data
Bit configuration

1. Output set-point value (Value range 0 – 10,000, is equivalent to 0 – 100 %)
2. Input feedback18) (Value range 0 – 10,000 (16 Bit, signed integer), is equivalent to 0 – 100 %)
 Values below 0 (0.0 %) and above 10,000 (100.0 %) are possible due to mechanical tolerances.
 Example: Position -1.0 % corresponds to -100 = 0xFF9C

<table>
<thead>
<tr>
<th>Byte 2</th>
<th>Byte 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D15</td>
<td>D14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter bit</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>P0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>not used</td>
<td>not used</td>
<td>not used</td>
<td>not used</td>
</tr>
</tbody>
</table>

Table 33: Bit configuration

17.5 LED status display AS-Interface

NOTE

Breakage of the pneumatic connection pieces due to rotational impact.

▶ When unscrewing and screwing in the body casing, do not hold the actuator of the process valve but the connection housing.

The LED status display indicates the bus status (LED green and red).

<table>
<thead>
<tr>
<th>LED green</th>
<th>LED red</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>off</td>
</tr>
<tr>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>flashing</td>
<td>on</td>
</tr>
<tr>
<td>on</td>
<td>flashing</td>
</tr>
<tr>
<td>flashing</td>
<td>flashing</td>
</tr>
</tbody>
</table>

POWER OFF
No data traffic (expired Watch Dog at slave address does not equal 0)
OK
Slave address equals 0
Serious periphery error
Device error (peripheral error)

Figure 51: LED status display AS-Interface

Table 34: LED Status Display AS-Interface
Check that the seal is correctly positioned in the body casing.

NOTE

- Breakage of the pneumatic connection pieces due to rotational impact.
 - When unscrewing and screwing in the body casing, do not hold the actuator of the process valve but the connection housing.

- Damage or malfunction due to penetration of dirt and humidity.
 - To observe degree of protection IP65 / IP67, screw the transparent cap in all the way.

Close the device (assembly tool: 674077).
18 OPERATION AND FUNCTION

The positioner type 8694 has different basic and additional functions which can be configured and parameterized via the DIP switches or the communications software.

18.1 Basic functions

The following basic functions can be activated via the DIP switches (CUTOFF and CHARACT) or changed (DIR.CMD).

The parameters for the sealing function (CUTOFF) and characteristic correction (CHARACT) are set using the communication software.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>DIP Switches</th>
<th>OFF</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal of the effective direction</td>
<td>Effective direction between input signal and set-point position</td>
<td></td>
<td>1</td>
<td>rise</td>
</tr>
<tr>
<td>set-point value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIR.CMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealing function</td>
<td>Sealing function for position controller</td>
<td></td>
<td>2</td>
<td>Sealing function off</td>
</tr>
<tr>
<td>CUTOFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Characteristic correction</td>
<td>Selection of the Transfer Characteristic between Input Signal and Stroke</td>
<td></td>
<td>3</td>
<td>Linear characteristic</td>
</tr>
<tr>
<td>CHARACT</td>
<td>(Correction Characteristic)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 35: Basic functions of DIP switches

The following basic functions can be activated or changed with the buttons or the communications software.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard signal[28]</td>
<td>Entry of the standard signal input for the set-point value</td>
<td>4 – 20 mA, 4-wire</td>
</tr>
<tr>
<td>INPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset to factory settings</td>
<td>Reset to factory settings</td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic calibration of</td>
<td>Automatic adjustment of the positioner to the relevant operating conditions</td>
<td></td>
</tr>
<tr>
<td>the position controller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X.TUNE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 36: Basic functions

[28] Only with communications software
18.1.1 **DIR.CMD** - Reversal of the effective direction of the positioner set-point value

You can use this function to adjust the effective direction between the input signal (INPUT) and the nominal position of the actuator.

Factory setting: DIP switch set to OFF (ascending)

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ON</td>
<td>Reversal of the effective direction of the set-point value (DIR.CMD) (set-point value 20 – 4 mA corresponds to position 0 – 100 %), fall</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Normal effective direction of the set-point value (set-point value 4 – 20 mA corresponds to position 0 – 100 %), rise</td>
</tr>
</tbody>
</table>

Table 37: DIP switch 1

The effective direction (**DIR.CMD**) can only be changed with DIP switch 1 in the positioner.

![DIR.CMD graph](image)

Figure 53: **DIR.CMD** graph
18.1.2 **CUTOFF** - Sealing function for the positioner

This function causes the valve to be sealed outside the control range. Control mode resumes at a hysteresis of 1%.

Factory setting: DIP switch 2 set to OFF (no sealing function)

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ON</td>
<td>Sealing function active. The valve completely closes below 2 %(^{29}) and opens above 98 % of the set-point value (CUTOFF).</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>No sealing function</td>
</tr>
</tbody>
</table>

Table 38: **DIP switch 2**

The communications software can be used to change the limits for the position set-point value as a percentage.

⚠️ The switching position of the DIP switches in the positioner has priority over the communications software, i.e. settings of the sealing function (**CUTOFF**) which are modified with the communications software are only active if DIP switch 2 in the positioner is set to ON.

![CUTOFF graph](image)

Figure 54: **CUTOFF graph**

\(^{29}\) Factory setting can be changed with communications software.
18.1.3 CHARACT -
Characteristic correction between input signal (position set-point value) and stroke

Characteristic (customer-specific characteristic)

This function can be used to activate a transfer characteristic with respect to set-point value (set-point position) and valve stroke for correction of the flow-rate or operating characteristic.

⚠️ The transfer characteristic can be changed via the communications software only.

Factory setting: DIP switch 3 set to OFF (linear)

<table>
<thead>
<tr>
<th>DIP Switches</th>
<th>Position</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ON</td>
<td>Correction characteristic for adjustment of the operating characteristic (linearization of the process characteristic \textit{CHARACT})39</td>
</tr>
<tr>
<td></td>
<td>OFF</td>
<td>Linear characteristic</td>
</tr>
</tbody>
</table>

Table 39: DIP switch 3

⚠️ The switching position of the DIP switches in the positioner has priority over the communications software, i.e. settings of the correction characteristic (\textit{CHARACT}) which are modified with the communications software are only active if DIP switch 3 in the positioner is set to ON.

Characteristics which can be selected via the communications software:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>Linear characteristic</td>
</tr>
<tr>
<td>1 : 25</td>
<td>Equal percentage characteristic 1 : 25</td>
</tr>
<tr>
<td>1 : 33</td>
<td>Equal percentage characteristic 1 : 33</td>
</tr>
<tr>
<td>1 : 50</td>
<td>Equal percentage characteristic 1 : 50</td>
</tr>
<tr>
<td>25 : 1</td>
<td>Inversely equal percentage characteristic 25 : 1</td>
</tr>
<tr>
<td>33 : 1</td>
<td>Inversely equal percentage characteristic 33 : 1</td>
</tr>
<tr>
<td>55 : 1</td>
<td>Inversely equal percentage characteristic 55 : 1</td>
</tr>
<tr>
<td>FREE</td>
<td>User-defined characteristic, freely programmable via nodes</td>
</tr>
</tbody>
</table>

Table 40: Selection of characteristics

39 The characteristic type can be changed with the communications software only.
The flow characteristic $k_v = f(s)$ indicates the flow-rate of a valve, expressed by the value k_v as a function of the stroke s of the actuator spindle. It is determined by the design of the valve seat and the seat seal. In general two types of flow characteristics are implemented, the linear and the equal percentage.

In the case of linear characteristics, equal k_v value changes dk_v are assigned to equal stroke changes ds.

\[dk_v = n_{lin} \cdot ds. \]

In the case of an equal percentage characteristic, an equal percentage change of the k_v value corresponds to a stroke change ds.

\[\frac{dk_v}{k_v} = n_{equprct} \cdot ds. \]

The operating characteristic $Q = f(s)$ specifies the correlation between the volumetric flow Q in the installed valve and the stroke s. This characteristic has the properties of the pipelines, pumps and consumers. It therefore exhibits a form which differs from the flow characteristic.

In the case of control tasks for closed-loop control systems it is usually particular demands which are placed on the course of the operating characteristic, e.g. linearity. For this reason it is occasionally necessary to correct the course of the operating characteristic in a suitable way. For this purpose the positioner features a transfer element which implements different characteristics. These are used to correct the operating characteristic.

Equal percentage characteristics 1:25, 1:33, 1:50, 25:1, 33:1, and 50:1 as well as a linear characteristic can be set. A characteristic can be freely programmed using nodes.
Entering the freely programmable characteristic

The characteristic is defined by 21 nodes distributed uniformly over the position set-point values ranging from 0 – 100%. They are spaced at intervals of 5%. A freely selectable stroke (adjustment range 0 – 100%) is assigned to each node. The difference between the stroke values of two adjacent nodes must not be greater than 20%.

Example of a programmed characteristic

![Graph showing programmed characteristic](image)

Figure 56: Example of a programmed characteristic

18.1.4 **INPUT** -

Enter the standard signal

Under this menu option, enter the unit signal used for the set-point value.

Factory setting: 4 – 20 mA, 4-wire

Further settings: 4 – 20 mA, 3-wire
0 – 20 mA, 4-wire
0 – 20 mA, 3-wire
18.1.5 **RESET** -
Reset to factory settings

This function can be used to reset the positioner to the factory settings.

18.1.6 **X.TUNE** -
Automatic calibration of the position controller

The **X.TUNE** function must be run for a function check of the positioner to adjust to specific local features.

WARNING

While the **X.TUNE** function is running, the valve automatically moves from its current position.

- Never run **X.TUNE** while a process is running.
- Take appropriate measures to prevent the system / positioner from being unintentionally actuated.

NOTE

Avoid maladjustment of the controller due to an incorrect compressed air supply or applied operating medium pressure.

- Run **X.TUNE whenever** the compressed air supply (= pneumatic auxiliary energy) is available during subsequent operation.
- Run the **X.TUNE** function preferably **without** operating medium pressure to exclude interference caused by flow forces.

To run **X.TUNE**, the positioner must be in the AUTOMATIC operating state (DIP switch 4 = OFF).

→ Select **Automatic calibration of the position controller**.
→ Start **X.TUNE**. To do this, click **Next**.

The progress of **X.TUNE** is shown in the communication software:

When the automatic adjustment completes, a message appears.

The changes are automatically transferred to the positioner's memory (EEPROM) after the **X.TUNE** function is successful.
18.2 Auxiliary functions

The following additional functions can be configured and parameterized via the communications software:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversal of the effective direction of the actuator DIR.ACT</td>
<td>Assignment of the aeration status of the actuator chamber to the actual position</td>
</tr>
<tr>
<td>Signal split range SPLTRNG</td>
<td>Signal split range; input signal as a % for which the valve runs through the entire stroke range.</td>
</tr>
<tr>
<td>Stroke limit X.LIMIT</td>
<td>Limit the mechanical stroke range</td>
</tr>
<tr>
<td>Limit actuating time X.TIME</td>
<td>Limit the control speed</td>
</tr>
<tr>
<td>Control parameters X.CONTROL</td>
<td>Parameterize the position controller</td>
</tr>
<tr>
<td>Safety position SAFEPOS</td>
<td>Input the safety position</td>
</tr>
<tr>
<td>Cable break detection SIG.ERROR</td>
<td>Configuration of signal level fault detection</td>
</tr>
<tr>
<td>Digital input BINARY.IN</td>
<td>Activation of the digital input</td>
</tr>
<tr>
<td>Analog output OUTPUT</td>
<td>Configuration of the outputs (only with auxiliary board for analogue feedback signal or digital outputs)</td>
</tr>
</tbody>
</table>

Table 41: Auxiliary functions

31) Only for variant without fieldbus communication.
18.2.1 **DIR.ACT** -
Reversal of the effective direction of the actuator

Use this function to set the effective direction between the aeration state of the actuator and the actual position.

Factory setting: Off (rise)

Rise: Direct effective direction (deaerated \rightarrow 0 %; aerated 100 %)
Case: Inverse effective direction (deaerated \rightarrow 100 %; aerated 0 %)

![DIR.ACT graph](image)

Figure 57: DIR.ACT graph
18.2.2 SPLTRNG - Signal split range

Minimum and maximum values of the input signal as a % for which the valve runs through the entire stroke range.

Factory setting: Lower signal range split = 0 %; Upper signal range split = 100 %

Lower value split range: Input the minimum value of the input signal as a %
Adjustment range: 0 – 75 %

Upper value split range: Input the maximum value of the input signal as a %
Adjustment range: 25 – 100 %

Use this function to limit the position set-point value range of the positioner by specifying a minimum and a maximum value. This makes it possible to divide a unit signal range that is used (4 – 20 mA, 0 – 20 mA) into several positioners (without or with overlapping). This allows several valves to be used alternately or, in the case of overlapping set-point value ranges, simultaneously as actuators.

To split a unit signal range into two set-point value ranges:

![SPLTRNG graph](image-url)

Figure 58: SPLTRNG graph
18.2.3 **X.LIMIT - Stroke limit**

This function limits the (physical) stroke to specified % values (lower and upper). In doing so, the stroke range of the limited stroke is set equal to 100 %. If the limited stroke range is left during operation, negative actual positions or actual positions greater than 100 % are shown.

Factory setting: Lower position limit = 0 %, upper position limit = 100 %

Adjustment ranges:

Stroke limit minimum: 0 – 50 % of the entire stroke
Stroke limit maximum: 50 – 100 % of the entire stroke

The minimum distance between the upper and lower stroke limit is 50 %. Therefore if one value is entered with a minimum distance of < 50 % the other value is adjusted automatically.

![X.LIMIT graph](image)

Figure 59: X.LIMIT graph
18.2.4 **X.TIME - Limit actuating time**

Use this function to specify the opening and closing times for the entire stroke and thereby limit control speeds.

⚠️ **When the X.TUNE function is running, the minimum opening and closing time for the entire stroke is automatically entered for Open and Close. Therefore, movement can be at maximum speed.**

Factory setting: values determined at the factory by the X.TUNE function

If the control speed will be limited, values can be input for Open and Close which are between the minimum values determined by the X.TUNE and 60 seconds.

- **Opening time:** Opening time for entire stroke (in seconds)
 - Adjustment range: 1 – 60 seconds
- **Closing time:** Closing time for entire stroke (in seconds)
 - Adjustment range: 1 – 60 seconds

Effect of limiting the opening speed when there is a jump in the set-point value

![X.TIME graph](image)

Figure 60: X.TIME graph
18.2.5 **X.CONTROL** -
Control parameters of the positioner

Use this function to set the parameters for the positioner (dead band and amplification factors (kp)).

Deadband: Insensitivity range of the positioner

Entry for the deadband as a % in reference to the scaled stroke range; i.e. stroke limit maximum - stroke limit minimum (see auxiliary function stroke limit (**X.LIMIT**)).

This function causes the controller to respond only beginning at a specific control difference. This function saves wear on the solenoid valves in the positioner and the pneumatic actuator.

![X.CONTROL graph](image)

Open/close amplification factor: Parameters for the positioner

Open amplification factor: Amplification factor of the positioner (for closing the valve)

Close amplification factor: Amplification factor of the positioner (for opening the valve)

18.2.6 **SAFPOS** -
Definition of the safe position

This function specifies the actuator safety position which is approached at defined signals.

The set safety position is only approached if there is a corresponding signal at the digital input (for configuration see digital input (**BINARY.IN**)) or if an error occurs. If the mechanical stroke range is limited with the stroke limit function (**X.LIMIT**), only safety positions within these limits can be approached. This function is executed in AUTOMATIC mode only.
18.2.7 **SIG.ERROR -**
Configuration of cable break detection (only for variant without fieldbus communication)

The cable break detection function (**SIG.ERROR**) is used to detect a fault on the input signal.

⚠️ Cable break detection can be selected for a 4 – 20 mA signal only:
Fault if input signal ≤ 3.5 mA (± 0.5 % of final value, hysteresis 0.5 % of final value)
If 0 – 20 mA is selected, cable break detection cannot be selected.

A signal error is indicated on the device by the LED 1 for activated cable break detection (error or out of specification).

Safety position for activated cable break detection:
- Active safe position function (**SAFEPOS**)
 - If a fault is detected, the actuator moves to the position set under safe position function.
- Inactive safe position function (**SAFEPOS**)
 - If a fault is detected, the actuator moves to the end position which it would assume in the isolated state.

18.2.8 **BINARY.IN (variant) -**
Configuration of the digital input (only for variant without fieldbus communication)

The following settings can be implemented:
- Approach the safety position
- Starting the function **X.TUNE**

Safety position

Digital input = 1 → Approach the safety position.

- Active safety position function (**SAFEPOS**)
 - The actuator moves to the position set under safe position function.
- Inactive safety position function (**SAFEPOS**)
 - The actuator moves to the end position which it would assume in the isolated state.

Starting the function **X.TUNE

Digital input = 1 → Starting **X.TUNE**.
18.2.9 **OUTPUT** (variant) - Configuration of the analog output (only for variant without fieldbus communication)

The function analog output (OUTPUT) only appears in the selection of functions if the positioner has an analog output (variant) or if no parameters have been read in yet.

The analog output can be used for feedback of the current position or of the set-point value to the control center.

<table>
<thead>
<tr>
<th>Function</th>
<th>Values or description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position (POS)</td>
<td>Output of the current position</td>
</tr>
<tr>
<td>Set-point value (CMD)</td>
<td>Output of the set-point value longest_word_length=43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard signal</th>
<th>Selection of the standard signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 – 20 mA</td>
<td></td>
</tr>
<tr>
<td>0 – 20 mA</td>
<td></td>
</tr>
</tbody>
</table>

18.2.10 Setting the LED mode, device status

User level: installer

Factory setting: valve mode + warnings

<table>
<thead>
<tr>
<th>Menu or function</th>
<th>Values or description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
</tr>
<tr>
<td>> General settings</td>
<td></td>
</tr>
<tr>
<td>> Parameter</td>
<td></td>
</tr>
<tr>
<td>> Status LED</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>☐ NAMUR mode</td>
<td></td>
</tr>
<tr>
<td>☐ Valve mode</td>
<td></td>
</tr>
<tr>
<td>☐ Valve mode + Warnings</td>
<td></td>
</tr>
<tr>
<td>☐ Fixed color</td>
<td></td>
</tr>
<tr>
<td>☐ LED off</td>
<td></td>
</tr>
</tbody>
</table>

Setting the LED mode, device status:

→ Status LED

→ Mode

Possible selection:

- ☐ NAMUR mode
- ☐ Valve mode
- ☐ Valve mode + Warnings
- ☐ Fixed color
- ☐ LED off

→ Select mode.

✔️ The mode is set.
19. SAFETY END POSITIONS

19.1 Safety end positions after failure of the electrical or pneumatic auxiliary power

<table>
<thead>
<tr>
<th>Actuator system</th>
<th>Designation</th>
<th>Safety end positions after failure of the auxiliary power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single-acting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control function A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up</td>
<td>down</td>
</tr>
<tr>
<td></td>
<td>down</td>
<td></td>
</tr>
<tr>
<td></td>
<td>single-acting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control function B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>down</td>
<td></td>
</tr>
</tbody>
</table>

Table 42: Safety end positions
20 MAINTENANCE

20.1 Safety instructions

⚠️ DANGER
Risk of injury from high pressure in the equipment/device.
▶ Before working on equipment or device, switch off the pressure and deaerate/drain lines.

Risk of electric shock.
▶ Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
▶ Observe applicable accident prevention and safety regulations for electrical equipment.

⚠️ WARNING
Risk of injury from improper maintenance.
▶ Maintenance may be performed by authorised technicians only.

Risk of injury from unintentional activation of the system and an uncontrolled restart.
▶ Secure system from unintentional activation.
▶ Following maintenance, ensure a controlled restart.
20.2 Service at the air intake filter

DANGER
Risk of injury from high pressure in the equipment/device.

▶ Before working on equipment or device, switch off the pressure and deaerate/drain lines.

To protect the internal solenoid valves and the actuator, the pilot air is filtered.
The direction of flow of the air intake filter in installed state is from the inside to the outside through the filter material.

![Figure 62: Service on the air intake filter](image)

Procedure:
→ Unlock the quick connector by pressing the holding element and pulling out the air intake filter (if necessary, use a suitable tool in between the recesses in the head of the filter).
→ Clean the filter or, if necessary, replace the filter.
→ Check inner O-ring and, if required, clean.
→ Insert the air intake filter all the way into the quick connector.

DANGER
Risk of injury due to improper installation.

▶ Ensure that the air intake filter is installed correctly.

→ Check that the air intake filter is secure.
21 ACCESSORIES

<table>
<thead>
<tr>
<th>Designation</th>
<th>Order no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special wrench</td>
<td>665702</td>
</tr>
<tr>
<td>Wrench for opening/closing the transparent cap</td>
<td>674077</td>
</tr>
<tr>
<td>Communication software Bürkert Communicator</td>
<td>Information at www.burkert.com</td>
</tr>
</tbody>
</table>

USB-büS interface set:
- USB-büS interface set 2 (büS stick + 0.7 m cable with M12 plug) 772551
- büS adapter for büS service interface (M12 on büS service interface Micro-USB) 773254
- büS cable extension (M12 pin to M12 socket), length 1 m 772404
- büS cable extension (M12 pin to M12 socket), length 3 m 772405
- büS cable extension (M12 pin to M12 socket), length 5 m 772406
- büS cable extension (M12 pin to M12 socket), length 10 m 772407

Table 43: Accessories

21.1 Communications software

The PC operating program “Communicator” is designed for communication with the devices from the Bürkert positioner family (valid since serial number 20000).

A detailed description and precise schedule of the procedure for the installation and operation of the software can be found in the associated documentation.

Download the software at: www.burkert.com
22 DISASSEMBLY

22.1 Safety instructions

⚠️ DANGER
Risk of injury from high pressure in the equipment/device.
▶ Before working on equipment or device, switch off the pressure and deaerate/drain lines.

Risk of electric shock.
▶ Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
▶ Observe applicable accident prevention and safety regulations for electrical equipment.

⚠️ WARNING
Risk of injury from improper disassembly.
▶ Disassembly may be carried out by authorized technicians only and with the appropriate tools.

Risk of injury from unintentional activation of the system and an uncontrolled restart.
▶ Secure system from unintentional activation.
▶ Following disassembly, ensure a controlled restart.

22.2 Disassembly the positioner

Procedure:
1. Pneumatic connection

⚠️ DANGER
Risk of injury from high pressure in the equipment/device.
▶ Before working on equipment or device, switch off the pressure and deaerate/drain lines.

→ Loosen the pneumatic connection.
→ Series 20xx:
 Loosen the pneumatic connection between positioner and actuator.
2. **Electrical connection**

⚠️ **DANGER**

Risk of electric shock.

- Before working on equipment or device, switch off the power supply and secure to prevent reactivation.
- Observe applicable accident prevention and safety regulations for electrical equipment.

Circular plug-in connector:

→ Loosen the circular plug-in connector.

Cable gland:

→ Open the positioner: unscrewing the body casing in an anticlockwise direction.

→ Unscrew the screw terminals and pull out cables.

→ Close the positioner.

3. **Mechanical connection**

→ Loosen the fastening screws.

→ Remove the positioner upwards.

Figure 63: Disassembly the positioner
TRANSPORTATION, STORAGE, DISPOSAL

NOTE

<table>
<thead>
<tr>
<th>Damage in transit due to inadequately protected devices.</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Protect the device against moisture and dirt in shock-resistant packaging during transportation.</td>
</tr>
<tr>
<td>▶ Observe permitted storage temperature.</td>
</tr>
</tbody>
</table>

NOTE

<table>
<thead>
<tr>
<th>Incorrect storage may damage the device.</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Store the device in a dry and dust-free location.</td>
</tr>
<tr>
<td>▶ Storage temperature: -20 to +65 °C</td>
</tr>
</tbody>
</table>

Environmentally friendly disposal

- Follow national regulations regarding disposal and the environment.
- Collect electrical and electronic devices separately and dispose of them as special waste.

Further information at country.burkert.com