FLUID CONTROL SYSTEMS

取扱説明書

制御ヘッドタイプ8691 REV． 3

目次

1 本取扱説明書について 7
1.1 表記
1.2 用語の定義
2 使用目的 ． 8
3 基本的な安全注意事項 9
4 一般情報 10
4.1 連絡先 10
4.2 保証 10
4.3 ウェブサイトで閲覧できる情報 10
4.4 商標 10
5 製品説明 11
5.1 構造 11
5．1．1 構造，内蔵制御空気ダクト（21xx，Element） 11
5．1．2 構造，外部制御空気ダクト（20xx，Classic） 11
5．1．3 特殊仕様に関して 12
5.2 機能 12
6 テクニカルデータ 13
6.1 規格および指令 13
6.2 認可 13
6.3 銘板 14
6．3．1 標準銘板 14
6．3．2 UL銘板 14
6．3．3 UL追加ラベル 14
6.4 動作条件 15
6．4．1 流体データ 15
6．4．2 電気データ 16
6．4．2．1 電気データ，フィールドバス通信無し仕様 16
6．4．2．2 電気データ，IO－Link 16
6．4．2．3 電気データ，büS 17
6．4．2．4 電気データ，ASインターフェース 17
6.5 機械データ 17
6．5．1 安全終端位置 18
6.6 通信 18
6．6．1 IO－Link 18
7 機械関連の設置 19
7.1 安全注意事項 19
7.2 内蔵制御空気ダクト製品の設置（21xx，Element） 19
7.3 外部制御空気ダクト装備製品の設置（20xx，Classic） 22
7.4 製品と接続位置の調整（回転） 26
7．4．1 駆動部の回転，六角部装着製品 27
7．4．2 駆動部の回転 六角部非装着製品 28
7．4．3 製品の回転 29
7.5 サードパーテイ製回転式アクチュエータへの取付 30
8 空圧式取付 31
8.1 安全注意事項 31
8.2 製品の空圧接続 31
9 電気的取付 32
9.1 電気的取付に関する安全注意事項 32
9.2 フィールドバス通信を使用せずに製品を電気接続します 32
9．2．1 ケーブル接続部付き製品 32
9．2．2 円形コネクタ付き製品 34
9.3 製品の電気接続，IO－Link，ポートクラスA 35
9.4 製品の電気接続，IO－Link，ポートクラスB 35
9.5 製品の電気接続，büS 36
9.6 製品の電気接続，ASインターフェース 36
9.7 製品を電気接続します。多極ケーブルおよびフラットケーブルクランプを備えたASインターフェース． 37
10 コミッショニング 38
10.1 プロセスバルブの方向の反転 38
10.2 ティーチ機能：終端位置の検出と保存，Rev． 3 41
10．2．1 自動ティーチ機能の起動 41
10．2．2 手動ティーチ機能の起動 43
10．2．3 ティーチイン操作機能 45
10．3 Bürkertコミュニケーターでの製品設定 46
10．3．1 製品をBürkertコミュニケーターと接続する 46
10.4 IO－Link 48
10．4．1 情報，IO－Link 48
10．4．2 フィールドバスの構成 48
10.5 büS 48
10．5．1 情報，büS 48
10．5．2 フィールドバスの構成 48
10．6 ASインターフェース 49
10．6．1 認証 49
10．6．2 プログラミングデータ 49
11 操作および表示エレメント 50
11.1 動作モード 51
11.2 操作および表示エレメントの機能 52
11.3 ステータス表示 55
11．4 LEDモードの説明 55
11．4．1 バルブモード 55
11．4．2 エラーメッセージ付きバルブモード（バルブモード＋エラー） 56
11．4．3 エラーメッセージと警告付きバルブモード（バルブモード＋警告） 56
11．4．4 NAMURモード 58
11．4．5 固定カラー． 58
11．4．6 LEDオフ 58
11．5 LEDモードの設定，ステータス表示 59
11.6 プリコントロールバルブで製品の手動切り替え 60
12 メンテナンス 62
12.1 フィードエアフィルターのサービス 62
13 取り外し 63
13.1 取り外しに関する安全注意事項 63
13.2 取り外し 64
14 スペアパーツ，アクセサリ 65
14.1 通信ソフトウェア 65
15 輸送，保管 66

1 本取扱説明書について

この取扱説明書は，製品のご使用開始から廃棄の全般について説明しています。
\rightarrow 本説明書は操作場所の手の届く所に保管してください。

安全に関する重要な情報。

- 本説明書をよくお読みください。
- 安全注意事項，使用目的および使用条件を遵守してください。
- 本機を使用する者は本説明書をよく読んで理解する必要があります。

1.1 表記

！危険！

直接的危険性についての警告。
－遵守しない場合，死亡または重傷を負う可能性があります。

．警告！

危険な状況に陥る可能性についての警告。
－遵守しない場合，重傷を負う，または死亡する可能性があります。

1注意！

潜在的危険性についての警告。
－遵守しない場合，軽症または中程度の負傷につながるおそれがあります。

注意！

建物や設備に対する損害の警告

－遵守しない場合，製品やシステムが損傷する可能性があります。
！重要な追加情報，ヒントおよび推薦事項を示します。

（i）本説明書あるいは他の文書の情報の参照指示です。

－危険回避のための指示を示します。
\rightarrow 実行する必要のある作業手順をマークします。
結果を示します。

1.2 用語の定義

本説明書では，「製品」という用語は次の製品タイプを指します。
制御ヘッドタイプ8691 REV． 3
この説明書で使用される用語「büS」（Bürkertシステムバス）は，CANopenプロトコルに基づいてBürkertが開発し た通信バスを意味しています。

2 使用目的

タイプ8691 REV．3制御ヘッドは，流体の流量を制御するプロセスバルブの空圧式駆動部に取り付けるために設計 されています。許容される流体はテクニカルデータに記載されています。
－本製品は，本書に示された注意事項や指示に従い適切に使用してください。本製品を適切に使用しない場合 は，人員や周辺設備，周辺環境に危険や損害を及ぼす恐れがあります。
－安全で欠陥のない操作のための前提条件は，適切な輸送，保管，設置，コミッショニング，操作およびメンテナ ンスです。
－ご使用の際には，許容データ，動作条件および使用条件を遵守してください。この情報は，契約書，取扱説明書 および銘板に記載されています。
－製品は，Bürkertが推奨する，もしくは承認する場合にのみ，他社の製品やコンポーネントと組み合わせて使用 してください。

- 屋外の保護されていない天候下に製品をさらさないでください。
- 爆発の危険性のあるエリアでは，このエリアで承認された製品のみ使用してください。これらの製品は別の防爆銘板によって識別されています。ご使用の際は，別のEx銘板およびExの追加説明書または別個のEx取扱説明書に記載されている情報を確認してください。

3 基本的な安全注意事項

この安全注意事項は，取付や稼働時，メンテナンスに際して発生する偶発事象や事故を考慮していません。事業者は，現地の安全規則をスタッフに関するものも含めて遵守する責任を負います。

危険

高圧およで流体の漏れによる負傷の危険。

－製品を取り外す，または緩める前に，必ず配管内の圧力を開放してください。配管のエア抜きまたは排出を行 ってください。

危険

感電による負傷の危険。

－製品や製品で作業を行う前に，必ず電源を切つてください。再度電源がオンにならないように保護して ください。
－現行の電機機器に関する事故防止•安全規則に留意します。

©

怪我を防ぐために以下の点に留意してください。

－正しい手順と方法で製品やプロセスを起動してください。不意に電源供給や加圧が生じない様に保護処置を してください。

- 設置やメンテナンスは本製品をよく知るスタッフが実施してください。
- 適切な工具のみを使用して，設置やメンテナンス作業を実行してください。
- 製品を改造したり，機械的なストレスを与えないでください。
- 製品は完全な状態で，取扱説明書に従つて使用してください。
- 技術上の一般規則を遵守してください。
- 製品は地域で有効な規制に従つて設置してください。
- アグレッシブまたは可燃性の流体を製品接続部に注入しないでください。
- 液体を製品接続部に注入しないでください。
- プロセスを中断した後は，制御した上で再起動してください。順序に注意してください。 1．電気または空圧供給を適用してください。 2．流体を適用します。
－使用目的を遵守してください。

4
 一般情報

4.1 連絡先

日本

ビユルケルトジャパン株式会社〒112－0005 東京都文京区
水道1－12－15
白鳥橋三笠ビル
電話：03－5804－5020
Fax：03－5804－5021
Eメール：info．jpn＠burkert．com
www．burkert．jp

インターナショナル

連絡先は印刷された取扱説明書の最後のページに記載されています。
当社ウェブサイトにも記載されています。
www．burkert．com

4.2 保証

保障の前提条件は，使用目的を留意し，制御ヘッドを適正に使用していることです。

4.3 ウェブサイトで閲覧できる情報

製品の取扱説明書とデータシートは以下の弊社サイトからもご覧いただけます。

www．burkert．jp

4.4 商標

記載されているブランドは，それぞれの企業／団体／組織の商標です
ロックタイト Henkel Loctite Deutschland GmbH

製品説明

5 製品説明

5.1 構造

製品のモジュール式設計は，様々な構成レベルやタイプを可能にします。

図2：構造，内蔵制御空気ダクト

5．1．2 構造，外部制御空気ダクト（20xx，Classic）

外部制御空気ダクトを備えた構造は，20xxシリーズ（Classic）のプロセスバルブに取り付けるために最適化されて います。

図3：構造，外部制御空気ダクト
この構造は，制御空気を外部駆動に接続できるようにするために，異なる基本ハウジングを有しています。

5．1．3 特殊仕様に関して

通信は以下を経由：
－フィールドバス通信なし：デジタル入出力およびbüSサービスインターフェースを備えた24 V装置
－ASインターフェース
－IO－Link
－büS

5.2 機能

本製品は，単動および複動プロセスバルブを制御することができます。
プリコントロールバルブは，手動操作で切り替えることができます。
アナログの誘導式センサーエレメントによる端部位置フィードバック。設定はティーチ機能で行います。

[^0]
6 テクニカルデータ

6.1 規格および指令

この製品は，関連するEU調和規制に対応しています。この製品は，英国の法律の要件にも準拠しています。 EU適合宣言／英国適合宣言の現行バージョンには，適合性評価手順で使用された整合規格が含まれています。

6.2 認可

本製品はカテゴリー3GDのATEX指令2014／34／EUに準拠し，ゾーン2および22での使用が認可されています。
！爆発の可能性がある場所で使用するための注意事項に従ってください。ATEXの追加説明書を参照。
製品はcULus認可済みです。UL範囲での使用方法については，「電気データ」の章を参照してください。

6.3 銘板

6．3．1 標準銘板

図4：標準銘板（例）

6．3．2 UL 銘板

図5：UL銘板（例）

6．3．3 UL追加ラベル

図6：UL追加ラベル（例）

6.4 動作条件

周囲温度

保護等級

メーカーの評価：
ULの評価：
使用高度
相対湿度

銘板を参照

EN 60529準拠＊のIP65，IP67
ULタイプ $4 x$ 定格，屋内使用のみ＊
海抜2，000 mまで
$55^{\circ} \mathrm{C}$ で最大 90%（結露なし）
＊正しく接続されたケーブルまたはプラグとソケットを使用し，「空圧式取付」の章の排気コンセプトを遵守している場合のみ。

6．4．1 流体データ

制御媒体

含塵率クラス7
含水量クラス3
含油量クラスX
圧力範囲
温度範囲
プリコントロールバルブの空気出力
接続

中性ガス，空気
ISO 8573－1に準拠した品質クラス
最大粒度 $40 \mu \mathrm{~m}$ ，
最大粒子密度 $10 \mathrm{mg} / \mathrm{m}^{3}$
最大圧力露点 $-20^{\circ} \mathrm{C}$ または
最低動作温度以下で最低 $10^{\circ} \mathrm{C}$
最大 $25 \mathrm{mg} / \mathrm{m}^{3}$
3～7 bar
$-10 \sim+50^{\circ} \mathrm{C}$
$250 I_{N} / m i n\left(\right.$ 換気およびエア抜きの場合）$\left(Q_{N n}\right.$ 値， 7 から6bar絶対圧力低下で定義）
スレッド接続G1／8

6．4．2 電気データ

注意

cULus認可を受けたタイブでの注意：
－UL NEC クラス2に従った制限付き電源回路のみ使用してください。

6．4．2．1 電気データ，フィールドバス通信無し仕様

	保護クラス接続部	DIN EN 61140 （VDE 0140－1）準拠のIII
	電源	ケーブル接続 M16x1．5 SW22（端子範囲 5～10 mm）ケーブル断面
		$0.14 \sim 1.5 \mathrm{~mm}^{2}$ 用ねじクランプによる
		円形コネクタ M12x1，8ピン
	通信	büSサービスインターフェース
	動作電圧	$24 \mathrm{~V}= \pm 25 \%$ ，最大残留リップル 10%
N్ర్ర	消費電流	$90 \mathrm{~mA} @ 18 \mathrm{~V}=+$ アクティブなデジタル出力の電流負荷
$\stackrel{\text { N }}{ }$	デジタル出力	$2 \times 24 \mathrm{~V}=$－PNP（標準装置，オプションでNPNとしても使用可能）
$\stackrel{\stackrel{\rightharpoonup}{*}}{ }$	出力電流	出力あたり最大 100 mA
$\ddot{\square}$	出力電圧	Low $=$ GND + 最大 $2 \mathrm{~V}, ~ \mathrm{High}=$ B動作電圧－最大 2 V
年克	デジタル入力	$24 \mathrm{~V}=$ 二 無電位（PNPおよびNPN制御に最適）
	入力電力	最大9 mA＠30 V＝－＝（EN 61131－2タイプ1に準拠）
$\stackrel{\text { ¢ }}{0}$	入力電圧	Low $=0 \cdots 5 \mathrm{~V}=$－High $=15 \cdots 30 \mathrm{~V}=$－（EN 61131－2タイプ1に準拠）
$\begin{aligned} & \overline{\mathbf{D}} \\ & \stackrel{\mathrm{Q}}{\mathrm{D}} \end{aligned}$	アクティブなデジタル出力の負荷を含 む消費電力または電力要件	$2 \mathrm{~W} / 5 \mathrm{~W}$
－	通信ソフトウェア	Bürkertコミュニケーター
$\stackrel{1}{x}$	6．4．2．2 電気データ，1O－Link	
器	保護クラス	DIN EN 61140 （VDE 0140－1）準拠のIII
	接続部	
－	電源，IO－Link	円形コネクタM12x1，4ピン，ポートクラスA
$\stackrel{\text { ¢ }}{\sim}$		円形コネクタM12x1，4ピン，ポートクラスB
$\stackrel{5}{4}$	通信	büSサービスインターフェース
\bar{m}	動作電圧	
N	システム供給（ピン1＋3）	$24 \mathrm{~V}= - \pm 25 \%$（仕様に準拠）
8	ポートクラスBのみ：	
\bigcirc	補助エネルギー（ピン $2+5$ ）＊	$24 \mathrm{~V}= - \pm 25 \%$（仕様に準拠）
$\underset{1}{2}$	消費電流	
Σ	システム供給（ピン1＋3）	
	ポートクラスBのみ：	
	補助エネルギー（ピン $2+5$ ）	最大 50 mA
	通信ソフトウェア	Bürkertコミュニケーター

[^1]
6．4．2．3 電気データ，büS

保護クラス	DIN EN 61140（VDE 0140－1）準拠のIII
接続部	
動作電圧	
büSシステム供給	円形コネクタM12x1，5ピン
消費電流 büSシステム供給	$24 \mathrm{~V}= - \pm 25 \%$（仕様に準拠）
	最大120 mA（プリコントロールバルブが取り付けられている場
	合のみ）

6．4．2．4 電気データ，ASインターフェース

保護クラス

接続部

電源，ASインターフェース
通信
動作電圧
ASインターフェースシステム供給 （ピン1＋3）
外部補助エネルギー付きタイプのみ
（補助電源）
（ピン $2+4$ ）＊
消費電力
プリコントロールバルブ出力
消費電流
システム供給
（ピン1＋3）

DIN EN 61140 （VDE 0140－1）準拠のIII
円形コネクタM12x1，4ピン
büSサービスインターフェース
29．5 V～31．6 Vの仕様に従ったASインターフェース
電源経由＝－
$24 \mathrm{~V}= - \pm 10 \%$

約0．8W，内蔵ウォッチドッグ機能含む
追加の補助エネルギーおよび取り付けられたプリコントロールバル ブなしで
最大 110 mA
追加の補助エネルギー（補助電源）付き，またはプリコントロールバ ルブなし
最大60 mA＠ $23 \mathrm{~V}=-$
最大50 mA＠ $24 \mathrm{~V} \pm 10 \%$
Bürkertコミュニケーター
＊電源には，IEC 364－4－41（PELVまたはSELV）に準拠した安全な分離が含まれている必要があります。

6.5 機械データ

寸法
ハウジング材
外部：
シール材
外部：
内部：
バルブスピンドルのストローク範囲

データシートをご参照ください
PPS，PC，VA

EPDM
NBR
2～47 mm

6．5．1 安全終端位置

電気または空圧式補助エネルギーの故障後の安全終端位置：

7 機械関連の設置

7.1 安全注意事項

危険

高圧および流体排出による怪我の危険。
－製品を取り外す，または緩める前に，必ず配管内の圧力を開放してください。配管のエア抜きまたは排出を行つ てください。

警告

不適切な取付による怪我の危険。

- 本取扱説明書および本製品を十分理解した技術者が設置を行ってください。
- 本製品を設置は，適切なツールを使用して行ってください。

警告

制御不能に陥ること，もしくは意図しない起動による傷害の危険。

- 意図しない電源オンに対してシステムを保護してください。
- 製品およびシステムは，制御された状態で起動していることを確認してください。

7.2 内蔵制御空気ダクト製品の設置（21xx，Element）

！事前取付プロセスバルブ非装備の製品のみ。

必要な取付セット：ELEMENT タイプ 21xx

注意

ハウジングの溶接時の製品および駆動部の損傷。
溶接接続を備えたプロセスバルブへの取付時は，次の点に注意してください。

- プロセスバルブの取扱説明書に記載されている取付手順に従ってください。
- 製品の取付前に，プロセスバルブを配管システムに溶接してください。

1．スイッチングスピンドルの取付

図7：
スイッチングスピンドルの取付（1），内蔵制御空気ダクト
\rightarrow 駆動部の透明フードを外します。
\rightarrow スピンドル延長部の位置表示を外します。
\rightarrow チューブコネクタタイプの場合：クランプスリーブ（白いグロメット）を制御空気接続部から外します。

図8：
スイッチングスピンドルの取付（2），内蔵制御空気ダクト

注意

不適切な取付による溝付きリングの損傷。

溝付きリングはガイドエレメント内に事前に取り付けられており，アンダーカットに「ロック」されている必要があ ります。
－スイッチングスピンドルの取付時に，溝付きリングを損傷しないでください。
\rightarrow スイッチングスピンドルをガイドエレメントに押し込みます。

注意

スレッドロッカーによる溝付きリングの汚染。

－スイッチングスピンドルにスレッドロッカーをつけないでください。
\rightarrow スイッチングスピンドルを固定するには，駆動部のスピンドル延長部のネジ山にスレッドロッカー（ロックタイ ト290等）を少しつけます。
\rightarrow Oリングの正しい位置を確認してください。
\rightarrow ガイドエレメントを駆動力バーにねじ込みます（締め付けトルク：最大 5 Nm ）。
\rightarrow スイッチングスピンドルをスピンドル延長部にねじ込みます。そのために，スロットが上部に取り付けられてい ます（締め付けトルク：最大1Nm）。
\rightarrow パックをスイッチングスピンドルに押し込み，ロックします。

2．成形シールの取付

\rightarrow 成形シールを駆動カバーに引つ張ります（小さい方の直径が上方向）。
\rightarrow 制御空気接続のOリングが正しい位置にあることを確認してください。
（！製品を設置する前に，制御空気接続部のクランプスリーブを取り外してください。

図9：
成形シールの取付

3．製品の取付

注意

基板の損傷または誤動作。

－パックがガイドレールに平らに配置されていることを確認してください。
\rightarrow パックと製品は次のように調整します。
1．パックが製品のガイドレールに配置されている（次の図を参照）。
2．製品の接続プラグが駆動部の制御空気接続部に接続されている（その次の図を参照）。

図10：パックの配置
\rightarrow 成形シールに隙間がないように製品を回転させずに駆動部に押します。

注意

汚れや水分の浸入による破損や故障。
保護等級IP65またはIP67に準拠するには次の点に注意してください。
－固定ネジは最大1．5 Nmの締め付けトルクで締め付けてください。
\rightarrow 側面の2本の固定ネジで駆動部に製品を固定します。その際，ねじは軽く締めてください（締め付けトルク：最大 1.5 Nm ）。

図11：
取付

7.3 外部制御空気ダクト装備製品の設置（20xx，Classic）

（事前取付プロセスバルブ非装備の製品のみ。

必要な取付セット：対応するバージョンのClassicタイプ 20xx

注意

溶接ハウジングの溶接時の製品および駆動部の損傷。
溶接ハウジングを備えたプロセスバルブへの取付時は，次の点に注意してください。

- プロセスバルブの取扱説明書に記載されている取付手順に従ってください。
- 製品の取付前に，プロセスバルブを配管システムに溶接してください。

1．スイッチングスピンドルの取付

図12：スイッチングスピンドルの取付（1），外部制御空気ダクト
\rightarrow 駆動部の透明フードを外します。
\rightarrow スピンドルの位置表示を六角レンチで回します。

図13：スイッチングスピンドルの取付（2），外部制御空気ダクト
\rightarrow 駆動力バーにOリングを押し込みます。
\rightarrow スイッチングスピンドル（および重なったガイドエレメント）をプラスチック部品で駆動部のスピンドルに手でね じ込みますが，まだ締め付けないでください。
\rightarrow フェーススパナ＊を使用して駆動部力バーにガイドエレメントをねじ込みます（締め付けトルク：最大8Nm）。
\rightarrow 駆動部のスピンドルのスイッチングスピンドルを締め付けます。そのために，スロットが上部に取り付けられて います（締め付けトルク：最大1 Nm）。
\rightarrow パックをスイッチングスピンドルに押し込み，ロックします。

2．製品の取付

図14：カバーリングの取付
\rightarrow カバーリングを駆動力バーに上げます（駆動サイズø50とø63のみ）。

注意

基板の損傷または誤動作。

－パックがガイドレールに平らに配置されていることを確認してください。
\rightarrow パックが製品のガイドレールに配置されるようにパックと製品を調整します（次の図を参照）。

[^2]

図15：
パックの配置
\rightarrow 製品を駆動部まで完全に押し，希望の位置に回して調整します。
！製品の空気圧接続と駆動部の空圧接続が互いに垂直に配置されていることを確認してください（以下の図 を参照）。取付位置が異なると，取付セットに含まれるチューブより長いチューブが必要になることがあります。

注意

汚れや水分の浸入による破損や故障。

保護等級P65またはIP67に準拠するには次の点に注意してください。
－固定ネジは最大 1.5 Nm の締め付けトルクで締め付けてください。
\rightarrow 側面の2本の固定ネジで駆動部に製品を固定します。その際，ねじは軽く締めてください（締め付けトルク：最大 1.5 Nm ）。

3．製品と駆動部の空圧接続

制御空気出ロ2－1
制御空気出ロ2－2
固定ネジ
制御空氠気接続部（下）
部（上）

図16：製品と駆動部の空圧接続
\rightarrow チューブコネクタを製品と駆動部にねじ込みます。
\rightarrow 以下の表に従い，取付セット付属のチューブを使用して製品と駆動部の空圧接続を行います。

注意

汚れや水分の浸入による破損や故障。

保護等級P65またはIP67に準拠するには次の点に注意してください。
－SFAとSFBのみ：未使用の制御空気出口を駆動部の空いている制御空気接続部に接続するか，またはシールプ ラグで閉じます。

FLUID CONTROL SYSTEMS

制御機能A（SFA）

静止位置で閉じるプロセスバルブ（ばね力による）

製品	制御空気出口		または	
駆動部	制御空気接続部（上）			（0）\bigcirc
	制御空気接続部（下）			

制御機能B（SFB）
静止位置で開くプロセスバルブ（ばね力による）

製品	制御空気出口		または	$2_{2} \quad 21$
駆動部	制御空気接続部（上）			（0）\bigcirc
	制御空気接続部（下）			

表2：製品と駆動部の空圧接続（SFAおよびSFB）
制御機能 I（SFI）
静止位置で閉じるプロセスバルブ

表3：製品と駆動部の空圧接続（SFI）
（！）「静止位置」とは，製品のプリコントロールバルブが無通電状態で作動していないことを意味します。
（1）制御機能Aおよび制御機能Bでの湿った周囲空気中では，製品の制御空気出口 2_{2} と駆動部の未接続制御空気接続部をチューブで接続することができます。これにより，製品の制御空気出口からの乾燥空気が駆動部の スプリングチャンバーに供給されます。

7.4 製品と接続位置の調整（回転）

（1）内蔵制御空気ダクト製品：
接続位置と製品の調整は，プロセスバルブタイプ2100，2101および2106でのみ可能です。製品と接続位置の調整は，次の方法で行うことができます。
－駆動部の回転
！外部制御空気ダクト装備製品：
製品と接続位置の調整は，次の方法で行うことができます。

- 駆動部を回します（タイプ 2000，2002，2006および2012のみ）
- 製品の回転

7．4．1 駆動部の回転，六角部装着製品

（1）以下の説明は，駆動部の下部に樹脂製の六角部（スパナあて）が備えられている，通常の製品についての説明 となります。

駆動部に六角部非装着の製品の場合：「駆動部の回転，六角部非装着製品」の章の取扱説明書を参照してく ださい。

操作エア（圧縮空気）接続口は，駆動部を360度回転させることで無段階に調整できます。

図17：
駆動部の回転（1）
\rightarrow バルブハウジングを固定装置に固定します（配管に取り付けられていない場合）

注意

バルブシートシーリングまたはシート輪郭の損傷。
－駆動部を回すときは，バルブを開く必要があります。
\rightarrow 制御機能Aとl＊の場合：
制御空気接続部1に圧縮空気を供給します。
\rightarrow プリコントロールバルブで製品を手動切り替えます（章を参照）。
\rightarrow 適切なオ一プンエンドレンチを使用してハウジング連結のレンチ面を保持します。
\rightarrow 駆動部の六角部に適切なオープンエンドレンチを当てます。

！危険

高圧および流体の漏れによる負傷の危険。

アクチュエータ部の回転方向を間違えると，ハウジング連結が緩んでしまう場合があります。
－駆動部は指定された回転方向にのみ回転してください。
\rightarrow 反時計回りに回し（下から見て），駆動部を希望する位置にします。

図18：駆動部の回転（2）

7．4．2 駆動部の回転 六角部非装着製品

接続の位置は，駆動部を 360° 回して無段階に調節できます。

図19：
駆動部の回転（1），六角部非装着装置
\rightarrow バルブハウジングを固定装置に固定します（配管に取り付けられていない場合）

注意

バルブシートシーリングまたはシート輪郭の損傷。

－駆動部を回すときは，バルブを開く必要があります。
\rightarrow 制御機能Aとl＊の場合：
制御空気接続部1に圧縮空気を供給します。
\rightarrow プリコントロールバルブで製品を手動で切り替えます。
\rightarrow 適切なオ一プンエンドレンチを使用してハウジング連結のレンチ面を保持します。
\rightarrow 駆動部のキ一輪郭に特殊レンチ＊＊を当てます。

介危険

高圧および流体の漏れによる負傷の危険。

アクチュエータ部の回転方向を間違えると，ハウジング連結が緩んでしまう場合があります。
－駆動部は指定された回転方向にのみ回転してください。
\rightarrow 時計回りに回し（下から見て），駆動部を希望する位置にします。

図20：
駆動部の回転（2），六角部非装着装置
＊仕様が利用可能な場合。
＊＊特殊レンチについては，アクセサリを参照してください。

7．4．3 製品の回転

！外部制御空気ダクト装備製品のみ（20xx，Classic）。
接続の位置は，製品を 360° 回して無段階に調節できます。

図21：
製品の回転
\rightarrow 製品と駆動部間の空圧接続を緩めます。
\rightarrow 固定ネジを外します（六角穴付きSW2．5）。
\rightarrow 製品を目的の位置に回します。

注意

汚れや水分の浸入による破損や故障。

保護等級IP65またはIP67に準拠するには次の点に注意してください。

- 固定ネジは最大 1.5 Nm の締め付けトルクで締め付けてください。
- ハウジングカバーを停止位置までねじ込みます。
- 透明フードを停止位置までねじ込みます。
- SFAとSFBのみ：未使用の制御空気出口を駆動部の空いている制御空気接続部に接続するか，またはシールプ ラグで閉じます。
\rightarrow 固定ネジは軽く締めてください（締め付けトルク：最大1．5 Nm）。
\rightarrow 製品と駆動部間の空圧接続を復元します。必要に応じて長いチューブを使用してください。

7.5 サードパーティ製回転式アクチュエータへの取付

\rightarrow 駆動部と製品の位置を合わせます（各アダプターセットの取付説明書を参照）。
\rightarrow ドライブシャフトから磁気エンコーダを挿入し，ねじ込み式ピンで固定します（最大締め付けトルク：0．5 Nm）。
\rightarrow 回転角度センサーを磁気エンコーダ上に配置します（アダプターセットを使用して固定します。関連する取付説明書を参照してください）。

注意

センサーケーブルの損傷。

－組み立て中にセンサーケーブルを損傷しないようにしてください。
\rightarrow 製品を駆動部に押し付けます。

注意

汚れや水分の浸入による破損や故障。

保護等級IP65またはIP67に準拠するには次の点に注意してください。
－固定ネジは最大0．5 Nmの締め付けトルクで締め付けてください。
\rightarrow 側面の2本の固定ネジで駆動部に製品を固定します。

図22：回転式アクチュエータへの取付

1．回転角度センサーは，最大調整速度が $90^{\circ} \% .4$ 秒までの回転式アクチュエータに適していますが，調整速度が速くなると，バルブ診断の精度に影響します（切替時間の測定が不正確になるなど）。

8 空圧式取付

8.1 安全注意事項

危険

高圧および流体の漏れによる負傷の危険。

－製品を取り外す，または緩める前に，必ず配管内の圧力を開放してください。配管のエア抜きまたは排出を行 ってください。

个警告

不適切な取付による怪我の危険。

- 本取扱説明書および本製品を十分理解した技術者が設置を行ってください。
- 本製品を設置は，適切なツールを使用して行ってください。

警告

制御不能に陥ること，もしくは意図しない起動による傷害の危険。

- 意図しない電源オンに対してシステムを保護してください。
- 製品およびシステムは，制御された状態で起動していることを確認してください。

8.2 製品の空圧接続

図23：製品の空圧接続

！製品を完全に機能させるための重要注意事項：

- 取付時に背圧を発生させないようにしてください。
- 接続には，十分な断面のホースを選択してください。
- 排気管は，排気接続部から水やその他の液体が製品に入ってこないように設置してください。
- 加えられる圧力供給は，駆動部をその終端位置にもたらすのに必要な圧力より少なくとも $0.5 \sim 1$ bar以上 であることが不可欠です。
\rightarrow 制御媒体を制御空気接続部（1）に接続します（3～7bar，計器用空気，オイルなし，水分なし，埃なし）。
\rightarrow 排気管またはサイレンサーを排気接続部（3）に接続します。
（1）排気コンセプト：
－保護等級｜P67を維持するために，乾燥した領域に排気管を取り付けてください。

9 電気的取付

9.1 電気的取付に関する安全注意事項

危険

感電による負傷の危険。

- 製品や製品で作業を行う前に，必ず電源を切ってください。再度電源がオンにならないように保護してください。
- 現行の電機機器に関する事故防止•安全規則に留意します。

〔警告

不適切な取付による怪我の危険。

- 本取扱説明書および本製品を十分理解した技術者が設置を行ってください。
- 本製品を設置は，適切なツールを使用して行つてください。

9.2 フィールドバス通信を使用せずに製品を電気接続します

9．2．1 ケーブル接続部付き製品

注意

回転による空圧接続プラグの破損。

－ハウジングカバーの取付けおよび取外し時は，プロセスバルブの駆動部ではなく，基本ハウジングで支えてく ださい。
\rightarrow ハウジングカバー（ステンレス鋼）を反時計回りに回して外します。

図24：
製品の開閉
\rightarrow ケーブル接続にケーブルを押し込みます。
\rightarrow 次のようにワイヤを接続します。

図25：
接続端子

端子	名称
$\mathrm{DO} 2+$	駆動部有効時のデジタル出力終端位置
$\mathrm{DO} 1+$	駆動部無効時のデジタル出力終端位置
+24 V	動作電圧 +24 V DC
-24 V	動作電圧 GND
$\mathrm{DI}+$	デジタル入力，バルブ制御＋
$\mathrm{DI}-$	デジタル入力，バルブ制御－

表4：
接続端子

注意

回転による空圧接続プラグの破損。
－ハウジングカバーの取付けおよび取外し時は，プロセスバルブの駆動部ではなく，基本ハウジングで支えてく ださい。

汚染や水分の浸入による損傷または誤動作。

保護等級IP65／IP67の遵守のため：
－ケーブル接続のユニオンナットを，使用しているケーブルサイズまたはブラインドプラグにあわせて締め付け ます（約1．5 Nm）。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow ケーブル接続のユニオンナットを締め付けます（トルク約1．5 Nm）。
\rightarrow ハウジングカバーのシールの位置が正しいか点検してください。
\rightarrow ハウジングを閉じます（組立ツール：アクセサリを参照）。

9．2．2 円形コネクタ付き製品

図26：円形コネクタの接続の割り当て（M12x1，8ピン）

ピン	心線カラー＊）	名称
1	白	駆動部有効時のデジタル出力（DO2＋）終端位置
2	茶	駆動部無効時のデジタル出力（DO1＋）終端位置
3	緑	動作電圧 GND
4	黄	動作電圧＋+24 V DC
5	グレー	デジタル入力，バルブ制御＋
6	ピンク	デジタル入力，バルブ制御－
7		不使用
8		不使用

表5：
接続の割り当て

[^3]
9.3 製品の電気接続，IO－Link，ポートクラスA

\qquad
図27：接続の割り当て

ピン	名称	ピン割り当て	
		IO－Linkモード	SIOモード
1	L＋	24 V DC	
2	I／Q	不使用	DIまたはDO
3	L－	0 V （GND）	
4	Q／C	IO－Link	DIまたはDO
5		不使用	不使用

表6：接続の割り当て
9.4 製品の電気接続，IO－Link，ポートクラスB

図28：	接続の割り当て		
ピン	名称	ピン割り当て	
		IO－Linkモード	SIOモード
1	L＋	24 V DC	
2	P24	24 V DC	補助エネルギー
3	L－	0 V （GND）	
4	Q／C	IO－Link	DはたはDO
5	M24	24 V GND	補助エネルギー
表7：	接続の割り当て		

9.5 製品の電気接続，büS

図29：
接続の割り当て

ピン	心線カラー	ピン割り当て
1	CANシールド／スクリーン	CANシールド／スクリーン＊
2	赤	+24 V DC $\pm 10 \%$ ，最大残留リップル 10%
3	黒	GND／CAN＿GND
4	白	CAN＿H
5	青	CAN＿L

表8：接続の割り当て
！büSネットワークの電気的取付での注意：
5ピン円形コネクタとシールドされた5芯ケーブルを使用してください。
＊アースに接続されていません。
9.6 製品の電気接続，ASインターフェース

図30：接続の割り当て

ピン	名称	ピン割り当て
1	バス +	バス回線，ASインターフェース +
2	AUX－	補助エネルギー－（オプションで追加の補助エネルギー （補助電源）を備えたタイプのみ）
3	バス－	バス回線，ASインターフェース－
4	AUX＋	補助エネルギー $+($ オプションで追加の補助エネルギー （補助電源）を備えたタイプのみ $)$

表9：
接続の割り当て

9.7 製品を電気接続します。多極ケーブルおよびフラットケーブルクランプを備えたASインターフェース

4ピン円形コネクタによるバス接続仕様の代わりとして，多極ケーブル（M12円形コネクタ）およびフラットケーブル クランプを使用する制御ヘッドがあります。円形コネクタの回路図はバス接続，M12円形コネクタ4極に相当し，簡単にフラットケーブルクランプ（「図31」を参照）と接続できます。

図31：
多極ケーブルおよびフラットケーブルクランプによる制御ヘッド8691
フラットケーブルクランプの取扱い
多極ケーブルには，M12チューブコネクタ出力のあるASインターフェース・フラットケーブル用のフラットケーブル クランプが付いています。フラットケーブルクランプにより，ASインターフェース・フラットケーブルをカットしたり スキンせずに「はめ込み」設置ができる貫通技術によるASインターフェース・フラットケーブルの接触が実現され ます。

図32：
フラットケーブルクランプ

10 コミッショニング

10.1 プロセスバルブの方向の反転

工場出荷時設定では，バルブ位置に以下の駆動部終端位置およびステータス表示色が割り当てられています。

バルブ位置	ステータス表示	駆動部位置
バルブ閉	点灯（緑）	駆動部無効
バルブ開	点灯 $($ 黄 $)$	駆動部有効

表10：工場出荷時設定

駆動部タイプおよびバルブタイプの製品組み合わせに応じて，バルブ位置（閉／開）を駆動部位置に割り当てるため にプロセスバルブの方向を反転する必要があるかどうかが決まります。

スイッチングスピンドルののストローク動作を伴う駆動

下部に圧力がかかるとバルブが開きます

上部に圧力がかかるとバルブが閉じます \rightarrow 設定は必要ありません。

下部に圧力がかかるとバルブが閉じます

上部に圧力がかかるとバルブが開きます \rightarrow プロセスバルブの方向を反転します。

表11：
製品組み合わせ
回転動作による駆動
換気時の回転動作：時計回り（上から見て）
圧力がかかるとバルブが閉じます
圧力がかかるとバルブが開きます
製品組み合わせ

プロセスバルブの方向を反転：

図33：製品の開閉

注意

回転による空圧接続プラグの破損。

－ハウジングカバーの取付けおよび取外し時は，プロセスバルブの駆動部ではなく，基本ハウジングで支えてく ださい。
\rightarrow ハウジングカバー（ステンレス鋼）を反時計回りに回して外します。

図34：
操作および表示エレメント

図35：
プロセスバルブの方向の反転
\rightarrow ボタン／キー2を10秒以上長押しします。緑色のInv．ValveDir－LEDが 10 Hz で 10 秒間点滅します。
\rightarrow 緑色のInv．ValveDir－LEDの点滅が短くなったら，ボタン／キー2から指を離します。

- バルブ方向の反転が有効：緑色のInv．ValveDir－LEDが点灯します。
- バルブ方向の反転が無効：Inv．ValveDir－LEDは点灯しません。
\rightarrow シール（ハウジングカバー）の正しい位置を確認してください。

注意

汚れや水分の浸入による破損や故障。

保護等級IP65またはIP67に準拠するには次の点に注意してください。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow 製品を閉じます（組立ツールについてはアクセサリを参照）。

10.2 ティーチ機能：終端位置の検出と保存，Rev． 3

－自動ティーチ機能：プリコントロールバルブ装着製品用
ティーチ機能は，バルブの終端位置を自動的に検出して保存します。
－手動ティーチ機能：プリコントロールバルブ非装着製品用終端位置の検出と保存は手動で行われます。
－ティーチイン操作機能：稼働中の最初の切り替え時に自動的に実行されます（事前に有効化されている場合）

10．2．1 自動ティーチ機能の起動

プリコントロールバルブ装着製品用：
ティーチ機能は，バルブの終端位置を自動的に検出して保存します。
！IO－LinkおよびASインターフェース仕様の場合，ティーチ機能はバス通信（各パラメータリストを参照）経由で起動することも，REV． 3 バージョンのすべての仕様ではBürkertコミュニケーターを使用して起動することもで きます。

必要な前提条件：

- 製品が駆動部に取り付けられていること。
- 電源電圧が接続されていること。
- 圧縮空気供給が接続されていること。
- 正しい基準条件を決定するための制御圧力が動作条件に対応していること。
透明フード
ハウジングカバー
基本ハウジング

図36：製品の開閉

注意

回転による空圧接続プラグの破損。

－製品を開閉する際は，駆動部ではなく基本ハウジングを支えてください。
\rightarrow ハウジングカバーを反時計回りに回して外します。

図37：
操作および表示エレメント

図38：
自動ティーチ機能の起動
\rightarrow ボタン／キー1を5秒以上押し続けると，自動ティーチ機能が起動します。赤色のManual－LEDおよび緑色のInv． ValveDir－LEDが5 Hzで5秒間点滅します。
\rightarrow 赤色のManual－LEDおよび緑色のInv．ValveDir－LEDがより速く点滅し始めた場合（10 Hz），5秒以内にボタン／キ —1から指を離します。
（自動ティーチ機能実行中は，ステータス表示がオレンジ色に点滅します（機能チェック）。ステータス表示のオレ ンジ色の点滅が止まると，ティーチ機能は終了します。
－バルブの終端位置が検出されて保存されます。
注記：ステータス表示が赤く点灯している場合は，ティーチ機能に障害があり，繰り返す必要があります。
\rightarrow シール（ハウジングカバー）の正しい位置を確認してください。

注意

汚れや水分の浸入による破損や故障。

保護等級IP65またはIP67に準拠するには次の点に注意してください。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow 製品を閉じます（組立ツールについてはアクセサリを参照）。

自動ティーチ機能のプロセス

ティーチ機能実行中はステータス表示がオレンジ色に点滅します。

- 下端位置が読み込まれます。
- プリコントロールバルブが切り替わります。
- 駆動部は自動的に上端位置に移動します。
- 上端位置が読み込まれます。
- プリコントロールバルブがオフになります。
- 駆動部は下端位置に戻ります。

10．2．2 手動ティーチ機能の起動

プリコントロールバルブ非装着装置用：
終端位置の検出と保存はユーザーが手動で行います。
1）IO－LinkおよびASインターフェース仕様の場合，ティーチ機能はバス通信（各パラメータリストを参照）経由で起動することも，REV． 3 バージョンのすべての仕様ではBürkertコミュニケーターを使用して起動することもで きます。

必要な前提条件：

- 製品が駆動部に取り付けられていること。
- 電源電圧が接続されていること。
- 圧縮空気供給が接続されていること。
- 正しい基準条件を決定するための制御圧力が動作条件に対応していること。
- ユーザーが空圧式駆動を切り替えることができます（開閉）。
透明フード
ハウジングカバー
基本ハウジング

図39：製品の開閉

注意

回転による空圧接続プラグの破損。

－製品を開閉する際は，駆動部ではなく基本ハウジングを支えてください。
\rightarrow ハウジングカバーを反時計回りに回して外します。

図40：
操作および表示エレメント

図41：
手動ティーチ機能の起動
\rightarrow 空圧式駆動のエア抜き：非作動の終端位置に動かします。
\rightarrow 手動ティーチ機能を起動するには，ボタン／キー1を10秒以上長押しします（赤色のManual－LED＋緑色のInv． ValveDir－LEDが同時に点滅します。最初の 5 秒はゆっくりと，次の 5 秒は速く，再び 10 秒以上ゆっくりと点滅した ら，ボタン／キー1から指を離します）。
（自動ティーチ機能実行中は，ステータス表示がオレンジ色に点滅します（機能チェック）。
\rightarrow 空圧式駆動がエア抜きされた非作動の終端位置にあるか確認してください。
\rightarrow ボタン／キー1を短く押し，終端位置を確定します。
（黄色のPilot－LEDが点灯します。
\rightarrow 空圧式駆動をエア抜きされた非作動の終端位置に動かします。
\rightarrow ボタン／キー1を短く押し，終端位置を確定します。
黄色のPilot－LEDは点灯しません。
\rightarrow 空圧式駆動のエア抜き：非作動の終端位置に動かします。
－ステータス表示のオレンジ色の点滅が止まると，ティーチ機能は終了します。
注記：ステータス表示が赤く点灯している場合は，ティーチ機能に障害があり，繰り返す必要があります。
\rightarrow シール（ハウジングカバー）の正しい位置を確認してください。

注意

汚れや水分の浸入による破損や故障。

保護等級IP65またはIP67に準拠するには次の点に注意してください。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow 製品を閉じます（組立ツールについてはアクセサリを参照）。

10．2．3 ティーチイン操作機能

ティーチイン操作機能は，通常運転時（初めて制御を切り替える際に一度）にプロセスバルブの終端位置を製品が自動的に実行する場合に使用できます。
この機能は，制御機能A（Normally closed）のプロセスバルブ駆動に対してのみ実行することができます。
機能は，büSサービスインターフェースを介して事前に有効化する必要があります。この機能が有効になっている場合，製品は最初の切り替えが適切に実行されるまで製品ステータスを「警告」（仕様外）と報告しますが，動作に は全く問題はなく，製品のデジタル出力を介して最後に適切に実行されたティーチ機能中に設定された終端位置 を出力します。

プロセスの説明：

- ティーチイン操作機能は，Bürkertコミュニケーター経由で有効になります。
- 製品は，プリコントロールバルブの最初の切り替えを待って警告を出力します。
- プリコントロールバルブを初めて切り替えると，最初の終端位置が決まります
- プロセスバルブが2番目の終端位置に移動します
- プロセスバルブは少なくとも1秒間この2番目の終端位置に留まる必要があり，その後この2番目の終端位置が決まります。
- 両端位置を保存し，製品ステータス「警告」を解除します。
- この機能の有効化はリセットされます

注記：最初の切り替え前に他の2つのティーチ機能（自動または手動ティーチ機能）のいずれかが実行された場合，この機能の有効化もリセットされます。

10．3 Bürkertコミュニケーターでの製品設定

Bürkertコミュニケーターを使用すると，すべての設定を製品で行うことができます。

10．3．1 製品をBürkertコミュニケーターと接続する

フィールドバス通信を備えていない製品，büSサービスインターフェースを介したIO－LinkまたはASインターフェース を備えた製品。

必要なコンポーネント：

- 通信ソフトウェア：PC用Bürkertコミュニケーター
- büS標準セット（「アクセサリ」を参照）
- büSサービスインターフェース用büSアダプター（「アクセサリ」を参照）
- 必要に応じて，büSケーブル延長（「アクセサリ」を参照）
透明フード
ハウジングカバー
基本ハウジング
駆䡃部

図42：
製品の開閉

注意

回転による空圧接続プラグの破損。

－製品を開閉する際は，駆動部ではなく基本ハウジングを支えてください。
\rightarrow ハウジングカバーを反時計回りに回して外します。

図43：büSサービスインターフェース
\rightarrow マイクロUSBプラグをbüSサービスインターフェースに差し込みます。
\rightarrow büSスティックを使用して，PCとの接続を確立します。
\rightarrow Bürkertコミュニケーターを起動します。
\rightarrow 設定を実行します。
\rightarrow シール（ハウジングカバー）の正しい位置を確認してください。

注意

汚れや水分の浸入による破損や故障。
保護等級IP65またはIP67に準拠するには次の点に注意してください。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow 製品を閉じます（組立ツールについてはアクセサリを参照）。

büS装置：

必要なコンポーネント：

- 通信ソフトウェア：PC用Bürkertコミュニケーター
- büS標準セット（「アクセサリ」を参照）
\rightarrow büSスティックを使用して，PCとの接続を確立します。
\rightarrow Bürkertコミュニケーターを起動します。
\rightarrow 設定を実行します。

10.4 IO－Link

10．4．1 情報，IO－Link

IO－Linkは，センサーやアクチュエータと通信するための世界標準化IO技術（IEC 61131－9）です。
IO－Linkは，センサーとアクチュエータ，シールドされていない標準センサーケーブル用の3線式接続技術によるポ イントツーポイント通信です。

10．4．2 フィールドバスの構成

必要なコミッショニングファイルとプロセスデータの説明および非周期パラメータはインターネットで入手可能です。

（a）

ダウンロードは：
www．burkert．com／タイプ 8691／ソフトウェア

10.5 büS

10．5．1 情報，büS

büSはBürkertによって開発されたシステムバスで，そのプロトコルはCANopenに基づいています。

10．5．2 フィールドバスの構成

必要なコミッショニングファイルとオブジェクトの説明は，インターネットで入手可能です。
ダウンロードは：
www．burkert．com／タイプ 8691／ソフトウェア

10．6 ASインターフェース

ASインターフェース（アクチュエータセンサーインターフェース）はフィールドバスシステムで，主にバイナリセンサ一とアクチュエータを上位制御（マスター）と連結させるために使用します。情報（データ），アクチュエータおよび センサーに供給するエネルギーの両方が，シールドなしの2線ケーブルを介して送信されます。

10．6．1 認証

この製品は，ASインターフェース仕様バージョン3．0に従つて認証されています。
証明書番号は要望に応じて

10．6．2 プログラミングデータ

	ASインターフェース 31スレーブ	ASインターフェース 62スレーブ
入出力構成	B hex（1出力，2入力）	A hex
IDコード	F hex	7 hex
拡大IDコード1	F hex	E hex
拡大IDコード2	F hex	S－B．A．E
プロファイル	S－B．F．F	

表13：プログラミングデータ

ビット割り当て

データビット	D3	D2	D1	D0
入口	0 駆動部有効時に終端位置に達していない 1 駆動部有効時に終端位置に到達	0 駆動部無効時 に終端位置に達し ていない 1 駆動部無効時 に終端位置に到達	－	－
出力	－	－	$\begin{aligned} & \text { 「 } 1 \rightarrow 0 」(\text { (下降エッジ) } \\ & =\text { 自動ティーチ機能の } \\ & \text { 起動 } \end{aligned}$	```0 プリコントロールバルブ OFF 1 プリコントロールバルブ ON```
$\begin{aligned} & \text { パラメータ } \\ & \text { ビット } \end{aligned}$	P3	P2	P1	PO
出力	不使用	不使用	不使用	$「 1 \rightarrow 0 」($ 下降エッジ $)=$自動ティーチ機能の起動

表14：ビット割り当て

11 操作および表示エレメント

図44：操作および表示エレメント

ボタン／キー	機能説明
1	$5 ~ 10$ 秒長押し：自動ティーチ機能の起動 10 秒以上長押し：手動ティーチ機能の起動
2	短く押す（動作モードHANDの場合のみ） プリコントロールバルブのオン／オフ 10～30秒長押し： プロセスバルブ方向の反転を有効化／無効化
1 および2	両方を2～10秒長押し：HAND↔AUTOの切り替え 両方を10～30秒長押し：製品の再起動開始 両方を30秒以上長押し：製品を工場出荷時設定にリセット

表15：操作エレメント

LED	表示説明
ステータス表示RGB－LED	バルブ位置，エラー，警告については 「ステータス表示」の章を参照
Pilot－LED黄	点灯：プリコントロールバルブ作動（オン） Manual－LED赤 点灯：動作モードHAND有効 10 Hzで0～2秒間点滅：HAND↔AUTOの切り替え
Inv．ValveDir－LED緑	点灯：プロセスバルブ方向の反転有効
Manual－LED赤および Inv．ValveDir－LED緑	ボタン／キー1を長押しすると両方が点滅： 5秒間ゆっくり点滅 5～10秒間速く点滅 \rightarrow ボタン／キーから指を離す：自動ティーチ機能を起動します。 10 秒以上ゆっくり点滅 \rightarrow ボタン／キーから指を離す：手動ティーチ機能を起動します。
Pilot－LED黄および Manual－LED赤および Inv．ValveDir－LED緑	すべて5 Hzで 10～30秒間点滅：製品の再起動が開始 すベて10 Hzで30秒以上点滅：製品は工場出荷時設定にリセット
ASインターフェースのみ：	ASインターフェース－Powerの表示
ASインターフェース PWR－LED緑	ASイン
ASインターフェース FAULT－LED赤	ASインターフェースエラーの表示

表16：表示エレメント

11.1 動作モード

－ボタン／キーを操作するには，通信ソフトウェアやフィールドバス通信で，ローカル操作ロックが解除されてい る／ロックされていない（工場出荷時設定）ことを確認してください。

自動（AUTO）

動作モード自動では，通常のコントローラ動作が実行および監視されます。

HAND

動作モードHANDでは，バルブをボタン／キー2により手動で開閉することができます。

11.2 操作および表示エレメントの機能

（ ボタン／キーを操作するには，通信ソフトウェアやフィールドバス通信で，ローカル操作ロックが解除されてい
る／ロックされていない（工場出荷時設定）ことを確認してください。

製品の開閉
透明フード
基本ハウジング
駆動部

図45：
製品の開閉

製品を開く：

注意

回転による空圧接続プラグの破損。
－製品を開閉する際は，駆動部ではなく基本ハウジングを支えてください。
\rightarrow ハウジングカバーを反時計回りに回して外します。

製品を閉じる：

\rightarrow シール（ハウジングカバー）の正しい位置を確認してください。

注意

汚れや水分の浸入による破損や故障。
保護等級IP65またはIP67に準拠するには次の点に注意してください。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow 製品を閉じます（組立ツールについてはアクセサリを参照）。

動作モードの切り替え（HAND $\leftrightarrow A U T O)$

図46：
動作モードの切り替え
\rightarrow ボタン／キー1および2を2秒以上長押しします。赤色Manual－LEDが 5 Hz で約2秒間点滅します。
\rightarrow 赤色Manual－LEDがより速く点滅し始めた場合（ 10 Hz ）， 5 秒以内にボタン／キー1および2から指を離します。
MAN 1000602731 JA Version：－Status：RL（released｜freigegeben）printed：21．12．2023
－動作モードHAND：赤色Manual－LEDが点灯し，ステータス表示がオレンジ色に点滅します。
動作モードAUTO：赤色Manual－LEDおよびステータス表示は点灯しません。

プリコントロールバルブの切り替え（動作モードHANDでのみ可能）

図47：
プリコントロールバルブの切り替え
\rightarrow ボタン／キー2を短く押します。

- プリコントロールバルブがオン：黄色のPilot－LEDが点灯します。
- プリコントロールバルブがオフ：黄色のPilot－LEDは点灯しません。

製品の再起動を実行

図48：
製品の再起動を実行
\rightarrow ボタン／キー1および2を10～30秒長押しします。赤色Manual－LEDが 5 Hz で約2秒間点滅し，その後 10 Hz で点滅します。
\rightarrow 赤色Manual－LEDが再度ゆっくり点滅し始めたら（ 5 Hz ），20秒以内にボタン／キー1および2から再度指を離し ます。

製品が再起動します。

工場出荷時設定にリセット

図49：工場出荷時設定にリセット
\rightarrow ボタン／キー1および2を30秒以上長押しします。赤色Manual－LEDが5 Hzで約2秒間点滅し，次に10 Hzで点滅し， その後再度 10 Hz で点滅します。
\rightarrow 赤色Manual－LEDが再度速く点滅し始めたら $(10 \mathrm{~Hz})$ ，ボタン／キー1および2から再度指を離します。
製品は工場出荷時設定にリセットされます。

11.3 ステータス表示

図50：ステータス表示
ステータス表示（RGB LED）には，製品ステータスおよびバルブ位置が表示されます。

ユーザーは次のLEDモードを設定できます。
－バルブモード

- エラーメッセージ付きバルブモード（バルブモード＋エラー）
- エラーメッセージと警告付きバルブモード（バルブモード＋警告，工場出荷時設定）
－NAMURモード
－固定カラー
－LEDオフ
（1）IO－LinkおよびASインターフェース仕様の場合，LEDモードはバス通信（各パラメータリストを参照）経由で起動
（1）LEDモード設定の説明は，取扱説明書の章に記載されています「11．5LEDモードの設定，ステータス表示」

11.4 LEDモードの説明

11．4．1 バルブモード

バルブモードで表示：
－バルブ位置：開，中間，閉

バルプ位置	バルブ位置 状態 カラー
開	点灯（黄）＊
中間	LEDオフ＊
閉	点灯（緑）＊

表17：バルブモード

[^4]
11．4．2 エラーメッセージ付きバルブモード（バルブモード＋エラー）

エラーメッセージ付きバルブモードの表示（バルブモード＋エラー）：

- バルブ位置：開，中間，閉
- 製品ステータス：故障

バルブ位置	バルブ位置状態，カラー	製品ステータス：故障状態，カラー	
開	点灯（黄）＊	点滅（赤）	黄が交互に点滅＊
中間	LEDオフ＊	点滅（赤）	LEDと交互にオフ＊
閉	点灯（緑）＊	点滅（赤）	緑が交互に点滅＊

表18：
バルブモード＋エラー
＊工場出荷時設定，バルブ位置用に選択可能な色：オフ，白，ピンク，青，ターコイズ，緑，黄，オレンジ，赤。

11．4．3 エラーメッセージと警告付きバルブモード（バルブモード＋警告）

エラーメッセージと警告付きバルブモードの表示（バルブモード＋警告）：

- バルブ位置：開，中間，閉
- 製品ステータス：故障，機能チェック，仕様外，メンテナンス要件（NAMURによる）

複数の製品ステータスが同時に存在する場合は，最も優先度の高い製品ステータスが表示されます。

バルブ位置		製品ステータス：通常モード
	状態，カラー	状態，カラー
開	点灯（黄）＊	--
中間	LEDオフ＊	--
閉	点灯 $(\text { 緑 })^{*}$	--

表19：
バルブモード＋警告，通常モード

バルブ位置		製品ステータス：故障	
	状態，カラー	状態，カラー	
開	点灯（黄）＊	点滅（赤）	黄が交互に点滅＊
中間	LEDオフ＊	点滅（赤）	LEDと交互にオフ＊
閉	点滅（赤）	緑が交互に点滅＊	

表20：バルブモード＋警告，製品ステータス故障

バルブ位置		製品ステータス：機能チェック	
	状態，カラー	状態，カラー	
開	点灯（黄）＊	点滅（オレンジ）	黄が交互に点滅＊
中間	LEDオフ＊	点滅（オレンジ）	LEDと交互にオフ＊
閉	点灯（緑）＊	点滅（オレンジ）	緑が交互に点滅＊

表21：バルブモード＋警告，製品ステータス 機能チェック

バルブ位置		製品ステータス。仕様外	
	状態，カラー		
状態，カラー			
開	点灯（黄）＊	点滅（黄）	黄が交互に点滅＊
中間	LEDオフ＊	点滅（黄）	LEDと交互にオフ＊
閉	点灯（緑）＊	点滅（黄）	緑が交互に点滅＊

表22：
バルブモード＋警告，製品ステータス仕様外

バルブ位置		製品ステータス：メンテナンス要件	
	状態，カラー	状態，カラー	
開	点灯（黄）＊	点滅（青）	黄が交互に点滅＊
中間	LEDオフ＊	点滅（青）	LEDと交互にオフ＊
閉	点灯（緑）＊	緑が交互に点滅 ${ }^{*}$（青）	

表23：バルブモード＋警告，製品ステータスメンテナンス要件

エラーメッセージと警告メッセージ時は，色が変わる間にLEDが短くオフになります。
ローカライズ時は，色は点滅表示のみです。
＊工場出荷時設定，バルブ位置用に選択可能な色：オフ，白，ピンク，青，ターコイズ，緑，黄，オレンジ，赤。

11．4．4 NAMURモード

NAMUR NE 107基づいて表示エレメントの色が変わります。
複数の製品ステータスが同時に存在する場合は，最も優先度の高い製品ステータスが表示されます。優先度は，制御モードからの偏差の重大度に依存します（赤色LED＝故障＝最高優先度）。

NE 107に基づいたステータス表示，2006年6月12日発行			
カラー	$\begin{aligned} & \text { カラーコ } \\ & \text { ード } \end{aligned}$	ステータス	説明
赤	5	故障，エラーまたは障害	製品またはその周辺機器の誤作動により，通常モードは不可能です。
オレンジ	4	機能チェック	製品が作動しているため，通常モ一ドは一時的に不可能です。
黄	3	仕様外	製品の環境条件またはプロセス条件が指定範囲外です。
青	2	メンテナンス要件	製品は通常モードですが，すぐに機能が制限されます。 \rightarrow 製品のメンテナンス
緑	1	診断がアクティブ	製品はエラーなく動作しています。ステータスの変更は色で表示されます。 メッセージは，必要に応じて接続されたフィールドバスを介し て送信されます。

表24：
カラーの説明

11．4．5 固定カラー

固定カラ一での表示：
－ステータス表示が白く点灯します＊。
＊工場出荷時設定，バルブ位置用に選択可能な色：白，ピンク，青，ターコイズ，緑，黄，オレンジ，赤

11．4．6 LEDオフ

LEDオフ時の表示：
－ステータス表示は点灯しません。

11．5 LEDモードの設定，ステータス表示

ユーザーレベル：インストーラー
工場出荷時設定：バルブモード＋警告

LEDモードの設定，ステータス表示：

\rightarrow Status LED
\rightarrow Mode
可能な選択：
－NAMUR mode
－Valve mode
－Valve mode＋errors
－Valve mode＋warnings
－Fixed color
－LED off
\rightarrow モードを選択します。
（ モードが設定されています。

11.6 プリコントロールバルブで製品の手動切り替え

制御空気が接続されている場合，プリコントロールバルブで製品を手動切り替えすることができます。
透明フード

図51：
製品の開閉

注意

回転による空圧接続プラグの破損。

－製品を開閉する際は，駆動部ではなく基本ハウジングを支えてください。
\rightarrow ハウジングカバーを反時計回りに回して外します。

図52：
製品の手動切り替え

注意

同時に押して回すことによる手動操作部の損傷。
－手動作動部を同時に押して回さないでください。

手動操作の切り替え位置：

図53：
手動作動
\rightarrow ドライバーを使用して手動作動を切り替えます（押すまたは回す）。
\rightarrow シールの正しい位置を確認してください。

注意

汚れや水分の浸入による破損や故障。
保護等級IP65またはIP67に準拠するには次の点に注意してください。
－ハウジングカバーを停止位置までねじ込みます。
\rightarrow 製品を閉じます（組立ツールについてはアクセサリを参照）。

12 メンテナンス

12.1 フィードエアフィルターのサービス

プリコントロールバルブと駆動部を保護するために，制御空気が濾過されます。
設置された状態でのフィードエアフィルターの流量方向は，スクリーンメッシュを通って内側から外側です。

§ 危険！

不適切なメンテナンスによる負傷の危険。

- 本取扱説明書および本製品を十分理解した技術者がメンテナンスを行ってください。
- 適切な工具のみを使用して，メンテナンスを行ってください。

図54：
フィードエアフィルターのサービス

危険！

高圧および流体の漏れによる負傷の危険。
－製品を取り外す，または緩める前に，必ず配管内の圧力を開放してください。配管のエア抜きまたは排出を行 ってください。
\rightarrow クランプスリーブを押してチューブコネクタのロックを解除し，フィードエアフィルターを引き出します。必要に応じて，供給フィードエアフィルターのヘッドの凹部間に適切なツールを使用してください。
\rightarrow フィルターをクリーニングするか，または必要に応じてフィルターを交換してください。
\rightarrow 内部のOリングを点検し，必要に応じてクリーニングしてください。
\rightarrow フィードエアフィルターをチューブコネクタにしつかりと差し込みます。
\rightarrow フィードエアフィルターが正しく取り付けられているか確認してください。

13 取り外し

13.1 取り外しに関する安全注意事項

1 危険

高圧および流体の漏れによる負傷の危険。
－製品を取り外す，または緩める前に，必ず配管内の圧力を開放してください。配管の工ア抜きまたは排出を行 ってください。

介危険

感電による負傷の危険。
－製品や製品で作業を行う前に，必ず電源を切ってください。再度電源がオンにならないように保護してく ださい。
－現行の電機機器に関する事故防止•安全規則に留意します。

© 警告

不適切な取り外しによる怪我の危険。

- 有資格者にのみ取り外しを行うことができます。
- 適切なツールを使用して，取り外しを実行してください。

〔警告

制御不能に陥ること，もしくは意図しない起動による傷害の危険。

- 意図しない電源オンに対してシステムを保護してください。
- 製品およびシステムは，制御された状態で起動していることを確認してください。

13.2 取り外し

図55：
製品の取り外し

空圧式による製品の取り外し

\rightarrow 制御空気接続を外します。
\rightarrow 排気接続部が接続されている場合：排気接続を外します。
\rightarrow 外部制御空気ダクト（Classic）：
駆動部への空圧接続を外します。

電気式による製品の取り外し

円形コネクタ付き製品：
\rightarrow 円形コネクタを外します。

機械式による製品の取り外し

\rightarrow 固定ネジを緩めます。
\rightarrow 製品を引き上げます。

14 スペアパーツ，アクセサリ

名称	注文番号
特殊レンチ	665702
透明フードの開閉用組立ツール	674077
通信ソフトウェア「Bürkertコミュニケーター」	情報はwww．burkert．jp

USB－büSインターフェースセット：	
büSインターフェースセット2（büSステイック＋M12コネクタ付き0．7 mケーブル）	772551
büSサービスインターフェース用büSアダプター （M12へのbüSサービスインターフェースMicro－USB）	773254
büSケーブル延長（M12コネクタからM12ソケット），長さ1 m	772404
büSケーブル延長（M12コネクタからM12ソケット），長さ3 m	772405
büSケーブル延長（M12コネクタからM12ソケット），長さ5 m	772406
büSケーブル延長（M12コネクタからM12ソケット），長さ10 m	772407
M12x1ソケット付き接続ケーブルPUR，8ピン，長さ2 m	919061

表25：アクセサリ

14.1 通信ソフトウェア

PCプログラムBürkertコミュニケーターは，製品タイプ8691との通信用です。
互換性の問題については，Bürkertセールスセンターにお問い合わせください。
（12）ソフトウェアのインストールと操作の詳細な説明は，対応する取扱説明書に記載されています。

ソフトウェアのダウンロード：www．burkert．jp

15 輸送，保管

注意

製品の不十分な保護による輸送中の損傷。

- 耐衝撃性の資材を使って梱包し，輸送中も製品を湿気とほこりから保護してください。
- 許容保管温度を遵守してください。

注意

誤った保管は機械の損傷の原因となることがあります。

- 製品は乾燥したほこりのない状態で保管してください。
- 保管温度：$-20 \sim+65^{\circ} \mathrm{C}$

16 廃棄処分

廃棄処分と環境に関する国内規制を遵守してください。
その他の情報は，ウェブサイト（https：／／www．burkert．jp／jp）を参照してください

MAN 1000602731 JA Version: - Status: RL (released | freigegeben) printed: 21.12.2023

[^0]: カラーLEDによる製品ステータスの表示。

[^1]: ＊補助エネルギーは，IEC 60664およびIEC 61010－2－201のSELVに準拠した電気的安全性により，システムの電源からガルバニックに絶縁され ています。

[^2]: ＊ピン $\varnothing: 3 \mathrm{~mm}$ ，ピン間隔： 23.5 mm

[^3]: ＊）指定された色は，利用可能な接続ヶ一ブルを示しています。

[^4]: ＊工場出荷時設定，バルブ位置用に選択可能な色：オフ，白，ピンク，青，ターコイズ，緑，黄，オレンジ，赤。

